1
|
Mergemeier K, Galster F, Lehr M. HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase using crude bovine plasma. J Enzyme Inhib Med Chem 2019; 34:144-149. [PMID: 30427224 PMCID: PMC6237158 DOI: 10.1080/14756366.2018.1524890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 11/21/2022] Open
Abstract
Recently, we have described a method for evaluation of plasma amine oxidase (PAO) inhibitors, which monitors the formation of 6-(5-phenyl-2H-tetrazol-2-yl)hexanal from the corresponding amine substrate by HPLC with UV-detection using purified bovine PAO. We now investigated, whether crude bovine plasma can be used as enzyme source in this assay instead of the purified enzyme. With the aid of specific inhibitors, it was ensured that there was no detectable activity of other important amine oxidases in the plasma, namely monoamine oxidase (MAO) A and B and diamine oxidase (DAO). For a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkan-1-amine substrates similar conversion rates were measured for both the purified PAO and crude plasma. The inhibition values determined for the PAO inhibitor 2-(4-phenylphenyl)acetohydrazide (16) under different conditions also corresponded. Additionally, inhibition data of the known PAO inhibitor 2-amino-N-(3-phenylbenzyl)acetamide (17) and a newly synthesised meta-substituted derivative of 16 were determined, which together reflect the two-step inhibition mechanism of these covalent inhibitors.
Collapse
Affiliation(s)
- Kira Mergemeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Florian Galster
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Mergemeier K, Lehr M. HPLC-UV assays for evaluation of inhibitors of mono and diamine oxidases using novel phenyltetrazolylalkanamine substrates. Anal Biochem 2018; 549:29-38. [PMID: 29550344 DOI: 10.1016/j.ab.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Recently, we have described an HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase (PAO) using 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine (4) as a new type of substrate. Now we studied, whether this compound or homologues of it can also function as substrate for related amine oxidases, namely diamine oxidase (DAO), monoamine oxidase A (MAO A) and monoamine oxidase B (MAO B). Among these substances, 4 was converted by DAO with the highest rate. The best substrate for MAO A and B was 4-(5-phenyl-2H-tetrazol-2-yl)butan-1-amine (2). To validate the new assays, the inhibition values of known enzyme inhibitors were determined and the data were compared with those obtained with the substrate benzylamine, which is often used in amine oxidase assays. For the DAO inhibitor 2-(4-phenylphenyl)acetohydrazide an about 10fold lower IC50-value against DAO was obtained when benzylamine was applied instead of 4, indicating that 4 binds to the enzyme with higher affinity than benzylamine. The IC50-values of clorgiline and selegiline against MAO A and B, respectively, also decreased (two- and 30fold) replacing 2 by benzylamine. The discrepancies largely disappeared, when the enzymes were pre-incubated with the inhibitors for 15 min. This can be explained with the covalent inhibition mechanism of the inhibitors.
Collapse
Affiliation(s)
- Kira Mergemeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
3
|
HPLC-UV method for evaluation of inhibitors of plasma amine oxidase using derivatization of an aliphatic aldehyde product with TRIS. Anal Bioanal Chem 2016; 408:4799-807. [DOI: 10.1007/s00216-016-9572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/29/2022]
|
4
|
Thomas PW, Cammarata M, Brodbelt JS, Fast W. Covalent Inhibition of New Delhi Metallo-β-Lactamase-1 (NDM-1) by Cefaclor. Chembiochem 2014; 15:2541-8. [DOI: 10.1002/cbic.201402268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 11/06/2022]
|
5
|
Reversible inactivation of bovine plasma amine oxidase by cysteamine and related analogs. Biochem Biophys Res Commun 2010; 403:442-6. [PMID: 21094148 DOI: 10.1016/j.bbrc.2010.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/13/2010] [Indexed: 11/23/2022]
Abstract
Cysteamine (1) was reported many years ago to reversibly inhibit lentil seedling amine oxidase, through the formation of a complex with thioacetaldehyde, the turnover product of 1. Herein, cysteamine (1) and its analogs 2-(methylamino)ethanethiol (3) and 3-aminopropanethiol (6) were found to be reversible inhibitors of bovine plasma amine oxidase (BPAO), but 2-(methylthio)ethylamine (7) was determined to be a weak irreversible inhibitor of BPAO. Based on our results, indicating the necessity of a sulfhydryl-amine for reversible inactivation of BPAO, the failure of inhibited BPAO to recover activity after gel filtration, the first-order kinetics of activity recovery upon dialysis, and 2,4,6-trihydroxyphenylalanine quinine (TPQ) cofactor transformation which indicated from the results of phenylhydrazine titration and substrate protection, we propose a mechanism for the reversible inactivation of BPAO by 1 involving the formation of a cofactor adduct, thiazolidine, between BPAO and 1.
Collapse
|
6
|
Zhang Y, Ran C, Zhou G, Sayre LM. Highly potent 3-pyrroline mechanism-based inhibitors of bovine plasma amine oxidase and mass spectrometric confirmation of cofactor derivatization. Bioorg Med Chem 2007; 15:1868-77. [PMID: 17150363 DOI: 10.1016/j.bmc.2006.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/05/2006] [Accepted: 11/13/2006] [Indexed: 12/22/2022]
Abstract
Despite the quinone-dependent copper amine oxidases being described as having the ability to metabolize unbranched primary amines to the corresponding aldehydes, we previously showed that the secondary amines 3-pyrrolines are metabolized as mechanism-based inactivators of bovine plasma amine oxidase (BPAO), and that the 3-(3-nitro-4-methoxyphenyl)-substituted analog was a particularly potent and efficient inactivator. We now show that additional 3-aryl-3-pyrrolines containing highly electron-withdrawing aryl groups (pyridyl, quinolyl, isoquinolyl, and pentafluorophenyl) are some of the most potent inactivators of BPAO reported to date. We also provide mass spectroscopic confirmation of the proposed mechanism of inhibition involving pyrrolylation of the active-site cofactor, through identification by MALDI-TOF and LC-ESI-MS/MS of the (3-arylpyrrol-1-yl)resorcinol derivatives of the cofactor-containing thermolytic peptides.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
7
|
Kim J, Zhang Y, Ran C, Sayre LM. Inactivation of bovine plasma amine oxidase by haloallylamines. Bioorg Med Chem 2006; 14:1444-53. [PMID: 16266805 DOI: 10.1016/j.bmc.2005.09.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 09/26/2005] [Accepted: 09/28/2005] [Indexed: 11/28/2022]
Abstract
Various 2- and 3-haloallylamines were synthesized and evaluated as inhibitors of the quinone-dependent bovine plasma amine oxidase (BPAO). 3-Haloallylamines, which were previously found to be good inhibitors of the flavin-dependent mitochondrial monoamine oxidase (MAO), exhibited a time-dependent inactivation of BPAO, with the 2-phenyl analogs being more potent than the 2-methyl analogs. No plateau of enzyme activity loss was observed, suggestive of a lack of competitive partitioning to normal turnover. The (E)- and (Z)-2-phenyl-3-fluoro analogs were the most potent (low microM IC(50)s), with the corresponding 3-bromo and 3-chloro analogs being >10-fold less potent. In each case, the Z-isomers were more potent than the E-isomers, the reverse of the configurational inhibitory preference observed with MAO. In contrast to the 2-phenyl analogs, 3-phenyl-2(or 3)-chloroallylamines displayed a partitioning behavior, consistent with these being both substrates and inactivators of BPAO.
Collapse
Affiliation(s)
- Jisook Kim
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
8
|
Di Paolo ML, Lunelli M, Scarpa M, Rigo A. Phosphonium compounds as new and specific inhibitors of bovine serum amine oxidase. Biochem J 2005; 384:551-8. [PMID: 15320876 PMCID: PMC1134140 DOI: 10.1042/bj20031883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TPP+ (tetraphenylphosphonium ion) and its analogues were found to act as powerful competitive inhibitors of BSAO (bovine serum amine oxidase). The binding of this new class of inhibitors to BSAO was characterized by kinetic measurements. TPP+ can bind to the BSAO active site by hydrophobic and by coulombian interactions. The binding probably occurs in the region of the 'cation-binding site'[Di Paolo, Scarpa, Corazza, Stevanato and Rigo (2002) Biophys. J. 83, 2231-2239]. Under physiological conditions, the association constant of TPP+ for this site is higher than 10(6) M(-1), the change of enthalpy being the main free-energy term controlling binding. Analysis of the relationships between substrate structure and extent of inhibition by TPP+ reveals some new molecular features of the BSAO active site.
Collapse
Affiliation(s)
- Maria Luisa Di Paolo
- Dipartimento di Chimica Biologica, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
9
|
Lamplot Z, Sebela M, Frycák P, Longu S, Padiglia A, Medda R, Floris G, Pec P. Reactions of plant copper/topaquinone amine oxidases with N6-aminoalkyl derivatives of adenine. J Enzyme Inhib Med Chem 2005; 20:143-51. [PMID: 15968819 DOI: 10.1080/14756360400021866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Plant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.6) are enzymes oxidising various amines. Here we report a study on the reactions of CAOs from grass pea (Lathyrus sativus), lentil (Lens esculenta) and Euphorbia characias, a Mediterranean shrub, with N6-aminoalkyl adenines representing combined analogues of cytokinins and polyamines. The following compounds were synthesised: N6-(3-aminopropyl)adenine, N6-(4-aminobutyl)adenine, N6-(4-amino-trans-but-2-enyl) adenine, N6-(4-amino-cis-but-2-enyl) adenine and N6-(4-aminobut-2-ynyl) adenine. From these, N6-(4-aminobutyl) adenine and N6-(4-amino-trans-but-2-enyl)adenine were found to be substrates for all three enzymes (Km approximately 10(-4)M). Absorption spectroscopy demonstrated such an interaction with the cofactor topaquinone, which is typical for common diamine substrates. However, only the former compound provided a regular reaction stoichiometry. Anaerobic absorption spectra of N6-(3-aminopropyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine reactions revealed a similar kind of initial interaction, although the compounds finally inhibited the enzymes. Kinetic measurements allowed the determination of both inhibition type and strength; N6-(3-aminopropyl)adenine and N6-(4-amino-cis-but-2-enyl)adenine produced reversible inhibition (Ki approximately 10(-5) - 10(-4) M) whereas, N6-(4-aminobut-2-ynyl)adenine could be considered a powerful inactivator.
Collapse
Affiliation(s)
- Zbynĕk Lamplot
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lamplot Z, Sebela M, Malon M, Lenobel R, Lemr K, Havlis J, Pec P, Qiao C, Sayre LM. 1,5-Diamino-2-pentyne is both a substrate and inactivator of plant copper amine oxidases. ACTA ACUST UNITED AC 2004; 271:4696-708. [PMID: 15606757 DOI: 10.1111/j.1432-1033.2004.04434.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,5-diamino-2-pentyne (DAPY) was found to be a weak substrate of grass pea (Lathyrus sativus, GPAO) and sainfoin (Onobrychis viciifolia, OVAO) amine oxidases. Prolonged incubations, however, resulted in irreversible inhibition of both enzymes. For GPAO and OVAO, rates of inactivation of 0.1-0.3 min(-1) were determined, the apparent KI values (half-maximal inactivation) were of the order of 10(-5) m. DAPY was found to be a mechanism-based inhibitor of the enzymes because the substrate cadaverine significantly prevented irreversible inhibition. The N1-methyl and N5-methyl analogs of DAPY were tested with GPAO and were weaker inactivators (especially the N5-methyl) than DAPY. Prolonged incubations of GPAO or OVAO with DAPY resulted in the appearance of a yellow-brown chromophore (lambda(max) = 310-325 nm depending on the working buffer). Excitation at 310 nm was associated with emitted fluorescence with a maximum at 445 nm, suggestive of extended conjugation. After dialysis, the color intensity was substantially decreased, indicating the formation of a low molecular mass secondary product of turnover. The compound provided positive reactions with ninhydrin, 2-aminobenzaldehyde and Kovacs' reagents, suggesting the presence of an amino group and a nitrogen-containing heterocyclic structure. The secondary product was separated chromatographically and was found not to irreversibly inhibit GPAO. MS indicated an exact molecular mass (177.14 Da) and molecular formula (C10H15N3). Electrospray ionization- and MALDI-MS/MS analyses yielded fragment mass patterns consistent with the structure of a dihydropyridine derivative of DAPY. Finally, N-(2,3-dihydropyridinyl)-1,5-diamino-2-pentyne was identified by means of 1H- and 13C-NMR experiments. This structure suggests a lysine modification chemistry that could be responsible for the observed inactivation.
Collapse
Affiliation(s)
- Zbynek Lamplot
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeon HB, Lee Y, Qiao C, Huang H, Sayre LM. Inhibition of bovine plasma amine oxidase by 1,4-diamino-2-butenes and -2-butynes. Bioorg Med Chem 2003; 11:4631-41. [PMID: 14527560 DOI: 10.1016/s0968-0896(03)00521-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bovine plasma amine oxidase (BPAO) was previously shown to be irreversibly inhibited by propargylamine and 2-chloroallylamine. 1,4-Diamine versions of these two compounds are here shown to be highly potent inactivators, with IC50 values near 20 microM. Mono-N-alkylation or N,N-dialkylation greatly lowered the inactivation potency in every case, whereas the mono-N-acyl derivatives were also weaker inhibitors and enzyme activity was recoverable. The finding that the bis-primary amines 1,4-diamino-2-butyne (a known potent inhibitor of diamine oxidases) and Z-2-chloro-1,4-diamino-2-butene are potent inactivators of BPAO is suggestive of unexpected similarities between plasma amine oxidase and the diamine oxidases and implies that it may be unwise to attempt to develop selective inhibitors of diamine oxidase using a diamine construct.
Collapse
Affiliation(s)
- Heung-Bae Jeon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|