1
|
Srinivasan S, Álvarez D, John Peter AT, Vanni S. Unbiased MD simulations identify lipid binding sites in lipid transfer proteins. J Cell Biol 2024; 223:e202312055. [PMID: 39105757 PMCID: PMC11303870 DOI: 10.1083/jcb.202312055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
The characterization of lipid binding to lipid transfer proteins (LTPs) is fundamental to understand their molecular mechanism. However, several structures of LTPs, and notably those proposed to act as bridges between membranes, do not provide the precise location of their endogenous lipid ligands. To address this limitation, computational approaches are a powerful alternative methodology, but they are often limited by the high flexibility of lipid substrates. Here, we develop a protocol based on unbiased coarse-grain molecular dynamics simulations in which lipids placed away from the protein can spontaneously bind to LTPs. This approach accurately determines binding pockets in LTPs and provides a working hypothesis for the lipid entry pathway. We apply this approach to characterize lipid binding to bridge LTPs of the Vps13-Atg2 family, for which the lipid localization inside the protein is currently unknown. Overall, our work paves the way to determine binding pockets and entry pathways for several LTPs in an inexpensive, fast, and accurate manner.
Collapse
Affiliation(s)
| | - Daniel Álvarez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, España
| | - Arun T John Peter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-inspired Materials, University of Fribourg , Fribourg, Switzerland
| |
Collapse
|
2
|
Rawat S, Singh G, Prasad A. Investigating the Taenia solium Fatty Acid Binding Protein Superfamily for Their Immunological Outlook and Prospect for Therapeutic Targets. ACS OMEGA 2024; 9:22557-22572. [PMID: 38826528 PMCID: PMC11137695 DOI: 10.1021/acsomega.3c09253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
Taenia solium, like other helminthic parasites, lacks key components of cellular machinery required for endogenous lipid biosynthesis. This deficiency compels the parasite to obtain all of its lipid requirements from its host. The passage of lipids across the cell membrane is tightly regulated. To facilitate effective lipid transport, the cestode parasite utilizes certain lipid binding proteins called FABPs. These FABPs bind with the lipid ligands and allow the transport of lipids across the membranes and into the cytosol. Here, by integrating a computational with homology protein prediction tools, we had identified five FABPs in the T. solium proteome. We confirmed their presence by RNA expression analysis of respective genes from the parasite's cysticerci transcript. During the molecular modeling and MD simulation studies, two of them, TsM_000544100 and TsM_001185100, were most stable. Furthermore, they had a robust interaction with the IgG1 molecule, as evidenced by MD simulation. In addition, by employing in silico screening, we had identified potential ligand interacting residues that are present on the probable druggable site. In combination with in vitro cysticidal assays, enalaprilat dihydrate showed efficacy against cysticerci, which suggests that FABPs play a significant role in the cysticercus life cycle. Together, we provided a detailed distribution of all FABPs expressed by T. solium cysticerci and the critical role of TsM_001185100 in cysticercus viability.
Collapse
Affiliation(s)
- Suraj
S. Rawat
- School
of Biosciences and Bioengineering, Indian
Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Gagandeep Singh
- Dayanad
Medical College and Hospital, Ludhiana, Punjab 141001,India
| | - Amit Prasad
- School
of Biosciences and Bioengineering, Indian
Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
- Indian
Knowledge System and Mental Health Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
- Centre
for Human-Computer Interaction, Indian Institute
of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
3
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Yu M, Zhu Y, Li Y, Chen Z, Sha T, Li Z, Zhang F, Ding J. Design of a Novel Multi-Epitope Vaccine Against Echinococcus granulosus in Immunoinformatics. Front Immunol 2021; 12:668492. [PMID: 34456902 PMCID: PMC8388843 DOI: 10.3389/fimmu.2021.668492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
All the time, echinococcosis is a global zoonotic disease which seriously endangers public health all over the world. In order to speed up the development process of anti-Echinococcus granulosus vaccine, at the same time, it can also save economic cost. In this study, immunoinformatics tools and molecular docking methods were used to predict and screen the antigen epitopes of Echinococcus granulosus, to design a multi-epitope vaccine containing B- and T-cell epitopes. The multi-epitope vaccine could activate B lymphocytes to produce specific antibodies theoretically, which could protect the human body against Echinococcus granulosus infection. It also could activate T lymphocytes and clear the infected parasites in the body. In this study, four CD8+ T-cell epitopes, three CD4+ T-cell epitopes and four B-cell epitopes of Protein EgTeg were identified by immunoinformatics methods. Meanwhile, three CD8+ T-cell epitopes, two CD4+ T-cell epitopes and four B-cell epitopes of Protein EgFABP1 were identified. We constructed the multi-epitope vaccine using linker proteins. The study based on the traditional methods of antigen epitope prediction, further optimized the prediction results combined with molecular docking technology and improved the precision and accuracy of the results. Finally, in vivo and in vitro experiments had verified that the vaccine designed in this study had good antigenicity and immunogenicity.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/immunology
- Antigens, Helminth/pharmacology
- B-Lymphocytes/immunology
- B-Lymphocytes/parasitology
- Cells, Cultured
- Computer-Aided Design
- Disease Models, Animal
- Drug Design
- Echinococcosis/blood
- Echinococcosis/immunology
- Echinococcosis/parasitology
- Echinococcosis/prevention & control
- Echinococcus granulosus/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Fatty Acid-Binding Proteins/immunology
- Fatty Acid-Binding Proteins/pharmacology
- Humans
- Immunity, Humoral
- Immunogenicity, Vaccine
- Lymphocyte Activation
- Mice, Inbred BALB C
- Middle Aged
- Molecular Docking Simulation
- T-Lymphocytes/immunology
- T-Lymphocytes/parasitology
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Young Adult
- Mice
Collapse
Affiliation(s)
- Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yujiao Li
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Bélgamo JA, Alberca LN, Pórfido JL, Romero FNC, Rodriguez S, Talevi A, Córsico B, Franchini GR. Application of target repositioning and in silico screening to exploit fatty acid binding proteins (FABPs) from Echinococcus multilocularis as possible drug targets. J Comput Aided Mol Des 2020; 34:1275-1288. [PMID: 33067653 DOI: 10.1007/s10822-020-00352-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflammatory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic echinococcosis (or hydatidosis). These diseases are included in the World Health Organization's list of priority neglected tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally confirming the model's predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification of such four FABP, for which initial structural and functional characterization is reported here.
Collapse
Affiliation(s)
- Julián A Bélgamo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge L Pórfido
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Franco N Caram Romero
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina
| | - Santiago Rodriguez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gisela R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Fatty acid-binding proteins in Echinococcus spp.: the family has grown. Parasitol Res 2020; 119:1401-1408. [DOI: 10.1007/s00436-020-06631-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
|
7
|
Structure and ligand binding of As-p18, an extracellular fatty acid binding protein from the eggs of a parasitic nematode. Biosci Rep 2019; 39:BSR20191292. [PMID: 31273060 PMCID: PMC6646235 DOI: 10.1042/bsr20191292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/02/2023] Open
Abstract
Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten β-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst β-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.
Collapse
|
8
|
Structural characterization of life-extending Caenorhabditis elegans Lipid Binding Protein 8. Sci Rep 2019; 9:9966. [PMID: 31292465 PMCID: PMC6620326 DOI: 10.1038/s41598-019-46230-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
The lysosome plays a crucial role in the regulation of longevity. Lysosomal degradation is tightly coupled with autophagy that is induced by many longevity paradigms and required for lifespan extension. The lysosome also serves as a hub for signal transduction and regulates longevity via affecting nuclear transcription. One lysosome-to-nucleus retrograde signaling pathway is mediated by a lysosome-associated fatty acid binding protein LBP-8 in Caenorhabditis elegans. LBP-8 shuttles lysosomal lipids into the nucleus to activate lipid regulated nuclear receptors NHR-49 and NHR-80 and consequently promote longevity. However, the structural basis of LBP-8 action remains unclear. Here, we determined the first 1.3 Å high-resolution structure of this life-extending protein LBP-8, which allowed us to identify a structurally conserved nuclear localization signal and amino acids involved in lipid binding. Additionally, we described the range of fatty acids LBP-8 is capable of binding and show that it binds to life-extending ligands in worms such as oleic acid and oleoylethanolamide with high affinity.
Collapse
|
9
|
Pourseif MM, Moghaddam G, Saeedi N, Barzegari A, Dehghani J, Omidi Y. Current status and future prospective of vaccine development against Echinococcus granulosus. Biologicals 2018; 51:1-11. [PMID: 29100669 DOI: 10.1016/j.biologicals.2017.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/15/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cystic echinococcosis (CE) is one of the most important zoonotic parasite diseases in human, livestock, and wildlife worldwide. Development of effective vaccines against CE appears to be the most promising strategy to control this infectious disease. Use of potential livestock and canine vaccines against the larval and adult stage of E. granulosus life cycle may be the key to the production of powerful vaccines. Some progress has been accomplished in the development of vaccines against hydatidosis using empirical approaches, while such immunotherapies often fail to induce adequate immune responses. Therefore, it is of great interest to identify antigens (Ags) with high immunogenicity and develop effective vaccines and adjuvant constructs against CE. To this end, various tools can be applied, including immune-based genomics and proteomics, immunoinformatics, systems vaccinology and mathematical/computational modeling. In this review, we aimed to provide comprehensive insights upon the current status of vaccination trials against E. granulosus, and also articulate some perspectives on the production of novel anti-CE vaccines. Use of novel prospective technologies is also discussed to highlight the importance of development and advancement of the next generation vaccines against E. granulosus.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Franchini GR, Pórfido JL, Ibáñez Shimabukuro M, Rey Burusco MF, Bélgamo JA, Smith BO, Kennedy MW, Córsico B. The unusual lipid binding proteins of parasitic helminths and their potential roles in parasitism and as therapeutic targets. Prostaglandins Leukot Essent Fatty Acids 2015; 93:31-6. [PMID: 25282399 DOI: 10.1016/j.plefa.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 02/03/2023]
Abstract
In this review paper we aim at presenting the current knowledge on structural aspects of soluble lipid binding proteins (LBPs) found in parasitic helminths and to discuss their potential role as novel drug targets. Helminth parasites produce and secrete a great variety of LBPs that may participate in the acquisition of nutrients from their host, such as fatty acids and cholesterol. It is also postulated that LBPs might interfere in the regulation of the host׳s immune response by sequestering lipidic intermediates or delivering bioactive lipids. A detailed comprehension of the structure of these proteins, as well as their interactions with ligands and membranes, is important to understand host-parasite relationships that they may mediate. This information could also contribute to determining the role that these proteins may play in the biology of parasitic helminths and how they modulate the immune systems of their hosts, and also towards the development of new therapeutics and prevention of the diseases caused by these highly pathogenic parasites.
Collapse
Affiliation(s)
- Gisela R Franchini
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| | - Jorge L Pórfido
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Marina Ibáñez Shimabukuro
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María F Rey Burusco
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Julián A Bélgamo
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology & School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Malcolm W Kennedy
- Institute of Molecular, Cell and Systems Biology & School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Betina Córsico
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|
11
|
Yang D, Chen L, Xie Y, Wu X, Nong X, Peng X, Lai W, Gu X, Wang S, Peng X, Yang G. Expression and immunolocalisation of TpFABP as a candidate antigen for the serodiagnosis of rabbit Taenia pisiformis cysticercosis. ACTA ACUST UNITED AC 2013; 20:53. [PMID: 24325873 PMCID: PMC3859029 DOI: 10.1051/parasite/2013053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 11/28/2013] [Indexed: 12/23/2022]
Abstract
The larval stage of Taenia pisiformis, also known as Cysticercus pisiformis, is the causative agent of cysticercosis and the cause of severe health problems in rabbits that negatively impacts on husbandry production. To date, there is no fast detection method to identify early infections in rabbits. In the present study, a new dot-ELISA-based on an endogenous antigen fatty acid-binding protein (FABP) was developed for the detection of cysticercosis, and its potential was then evaluated using test serum samples. Immunolocalisation showed that T. pisiformis FABP (TpFABP) localised to the parenchyma of the bladder wall of the cysticercus and perinuclear cytoplasm of parenchyma of the adult parasite. After cloning and expression, recombinant TpFABP (rTpFABP) protein was used for serodiagnosis of T. pisiformis infection in rabbits by dot-ELISA. The antibody was detected 14 days post-infection in rabbits experimentally infected with T. pisiformis. Based on the necropsy results, the sensitivity and specificity of 169 serum samples tested by rTpFABP dot-ELISA were found to be 98.2% (54/55) and 92.1% (105/114), respectively. These data suggest that the dot-ELISA developed in this study has potential for detection of T. pisiformis infection in rabbits.
Collapse
Affiliation(s)
- Deying Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Lin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuhang Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiang Nong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuxian Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuerong Peng
- College of Life and Basic Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
12
|
Zheng Y, Blair D, Bradley JE. Phyletic distribution of fatty acid-binding protein genes. PLoS One 2013; 8:e77636. [PMID: 24155969 PMCID: PMC3796463 DOI: 10.1371/journal.pone.0077636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/13/2013] [Indexed: 01/13/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are a family of fatty acid-binding small proteins essential for lipid trafficking, energy storage and gene regulation. Although they have 20 to 70% amino acid sequence identity, these proteins share a conserved tertiary structure comprised of ten beta sheets and two alpha helixes. Availability of the complete genomes of 34 invertebrates, together with transcriptomes and ESTs, allowed us to systematically investigate the gene structure and alternative splicing of FABP genes over a wide range of phyla. Only in genomes of two cnidarian species could FABP genes not be identified. The genomic loci for FABP genes were diverse and their genomic structure varied. In particular, the intronless FABP genes, in most of which the key residues involved in fatty acid binding varied, were common in five phyla. Interestingly, several species including one trematode, one nematode and four arthropods generated FABP mRNA variants via alternative splicing. These results demonstrate that both gene duplication and post-transcriptional modifications are used to generate diverse FABPs in species studied.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China
| | - David Blair
- James Cook University, Townsville, Queensland, Australia
| | - Janette E. Bradley
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Cui SJ, Xu LL, Zhang T, Xu M, Yao J, Fang CY, Feng Z, Yang PY, Hu W, Liu F. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. J Proteomics 2013; 84:158-75. [PMID: 23603110 DOI: 10.1016/j.jprot.2013.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Cystic hydatid disease is an important zoonosis caused by Echinococcus granulosus infection. The expression profiles of its parasitic life stages and host-Echinococcus interactions remain to be elucidated. Here, we identified 157 adult and 1588 protoscolex proteins (1610 in all), including 1290 novel identifications. Paramyosins and an antigen B (AgB) were the dominant adult proteins. Dog proteins (30) identified in adults indicated diminished local inflammation caused by adult infection. The protoscolex expresses proteins that have been reported to be antigens in other parasites, such as 6-phosphofructokinase and calcineurin B. Pathway analyses suggested that E. granulosus uses both aerobic and anaerobic carbohydrate metabolisms to generate ATP. E. granulosus expresses proteins involved in synthesis and metabolism of lipids or steroids. At least 339 of 390 sheep proteins identified in protoscolex were novel identifications not seen in previous analyses. IgGs and lambda light chains were the most abundant antibody species. Sheep proteins were enriched for detoxification pathways, implying that host detoxification effects play a central role during host-parasite interactions. Our study provides valuable data on E. granulosus expression characteristics, allowing novel insights into the molecular mechanisms involved in host-parasite interactions. BIOLOGICAL SIGNIFICANCE In this study, the Echinococcus granulosus adult worm proteome was analyzed for the first time. The protein identification of E. granulosus protoscoleces was extended dramatically. We also identified the most abundant host proteins co-purified with Echinococcus. The results provide useful information pertaining to the molecular mechanisms behind host-Echinococcus interaction and Echinococcus biology. This data also increases the potential for identifying vaccine candidates and new therapeutic targets, and may aid in the development of protein probes for selective and sensitive diagnosis of echinococcosis infection. In addition, the data collected here represents a valuable proteomic resource for subsequent genome annotation.
Collapse
Affiliation(s)
- Shu-Jian Cui
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Esteves A, Paulino Zunini M. In silicostudies ofEchinococcus granulosusFABPs. J Biomol Struct Dyn 2013; 31:224-39. [DOI: 10.1080/07391102.2012.698246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy. PLoS One 2012; 7:e51079. [PMID: 23284658 PMCID: PMC3528769 DOI: 10.1371/journal.pone.0051079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty acids closely parallel their prevalences in the hepatopancreas of C. quadricarinatus as measured under specific diet conditions.
Collapse
|
16
|
Porfido JL, Alvite G, Silva V, Kennedy MW, Esteves A, Corsico B. Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes. PLoS Negl Trop Dis 2012; 6:e1893. [PMID: 23166848 PMCID: PMC3499409 DOI: 10.1371/journal.pntd.0001893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/21/2012] [Indexed: 12/28/2022] Open
Abstract
Background Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP) family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious. Methodology/Principal Findings We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs). Conclusions/Significance This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite. Echinococcus granulosus is the causative agent of hydatidosis, a zoonotic infection that affects humans and livestock, representing a public health and economic burden in many countries. Since the parasites are unable to synthesise most of their lipids de novo, they must acquire them from the host and then deliver them by carrier proteins to specific destinations. E. granulosus produces in abundance proteins of the fatty acid binding protein (FABP) family, one of which, EgFABP1 has been characterised at the structural and ligand binding levels, but it has not been studied in terms of the mechanism of its interaction with membranes. We have investigated the lipid transport properties and protein-membrane interaction characteristics of EgFABP1 by applying biophysical techniques. We found that EgFABP1 interacts with membranes by a mechanism which involves direct contact with them to exchange their cargo. Given that the protein has been found in the secretions of the parasite, the implications of its direct interactions with host membranes should be considered.
Collapse
Affiliation(s)
- Jorge L. Porfido
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alvite
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Valeria Silva
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Malcolm W. Kennedy
- Institute of Molecular, Cell and Systems Biology, and Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adriana Esteves
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Kim SH, Bae YA, Yang HJ, Shin JH, Diaz-Camacho SP, Nawa Y, Kang I, Kong Y. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode. PLoS Negl Trop Dis 2012; 6:e1868. [PMID: 23150743 PMCID: PMC3493614 DOI: 10.1371/journal.pntd.0001868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/04/2012] [Indexed: 12/26/2022] Open
Abstract
Background Fatty acid (FA) binding proteins (FABPs) of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs) of Taenia solium metacestode (TsM), a causative agent of neurocysticercosis (NC), shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. Methodology/Principal Findings We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2), which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15–95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1) and 8.4 (TsMFABP2). Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]amino)undecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions of lipids and retinol. Conclusions/Significance The divergent biochemical properties, physiological roles and cellular distributions of the TsMFABPs might be one of the critical mechanisms compensating for inadequate de novo FA synthesis. These proteins might exert harmonized or independent roles on lipid assimilation and intracellular signaling. The specialized distribution of retinol in the canal region further implies that cells in this region might differentiate into diverse cell types during metamorphosis into an adult worm. Identification of bioactive systems pertinent to parasitic homeostasis may provide a valuable target for function-related drug design. Neurocysticercosis (NC), an infection of the central nervous system with Taenia solium metacestode (TsM), constitutes a leading cause of adult-onset seizures in endemic areas. Like other helminths, TsM is incapable of synthesizing lipid molecules. It should be equipped with a specialized system for lipid transportation from the host to ensure its long-survival. Such a transport system may be a target for function-associated drug design. We characterized two novel fatty-acid (FA)-binding TsM proteins (TsMFABP1 and TsMFABP2). Native and recombinant proteins bound to several FA analogs and retinol at micromolar and millimolar concentrations. Their binding was specifically inhibited by oleic acid. TsMFABP1exhibited high affinity toward FA analogs, while TsMFABP2 showed preferential affinity to retinol. Both TsMFABPs were predominantly expressed in the canal region of the worm, where lipids and retinol were abundantly distributed. The two paralogous TsMFABPs have undergone (or are still undergoing) structural diversification and following functional divergence to act as FABP or retinol binding protein, similar to the intracellular lipid binding proteins of deuterostomian animals. The canal region specific distribution of lipids, retinol and FABPs further suggested that cells in this area might differentiate into diverse cells to compose huge numbers of the proglottids, thereby playing vital roles in the parasite growth and development.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon, Korea
| | - Young-An Bae
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon, Korea
- Department of Microbiology, Graduate School of Medicine, Gachon University, Inchon, Korea
| | - Hyun-Jong Yang
- Department of Parasitology, Ewha Womans University, School of Medicine, Seoul, Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon, Korea
| | - Sylvia Paz Diaz-Camacho
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Yukifumi Nawa
- Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon, Korea
- * E-mail:
| |
Collapse
|
18
|
Molecular characterization, functional expression, tissue localization and protective potential of a Taenia solium fatty acid-binding protein. Mol Biochem Parasitol 2012; 186:117-25. [PMID: 23085006 DOI: 10.1016/j.molbiopara.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 11/23/2022]
Abstract
The fatty acid-binding proteins (FABPs) comprise a family of proteins that are widely expressed in animal cells and perform a variety of vital functions. Here, we report the identification, characterization, recombinant expression, tissue localization and protective potential of a Taenia solium FABP (TsFABP1). The TsFABP1 primary structure showed all the conserved residues characteristic of the subfamily iv of the intracellular Lipid-Binding Proteins (iLBPs), including those involved in the binding stabilization of the fatty acid molecule. Through a competitive binding assay we found that TsFABP1 is able to bind at least six different fatty acids with preference toward palmitic and stearic acid, suggesting that TsFABP1 is a member of the iLBP subfamily iv. Immunolocalization assays carried out on larval and adult tissues of four species of taeniids using anti-TsFABP1 hyperimmune sera produced in mice and rabbit, showed intense labeling in the tegument of the spiral canal and in subtegumental cytons of the larvae. These findings suggest that the spiral canal might be a major place for FA uptake in the developing scolex. In contrast, only subtegumental cytons in the adult worms stained positive. We propose that TsFABP1 is involved in the mechanism to mobilize fatty acids between compartments in the extensive syncytial tissue of taeniids. Protection assays carried out in a murine model of cysticercosis showed that subcutaneous immunization with TsFABP1 resulted in about 45% reduction of parasite load against an intraperitoneal challenge with Taenia crassiceps cysts. This reduction in parasite load correlated with the level of cellular and humoral immune responses against TsFABP1, as determined in spleen lymphocyte proliferation and ELISA testing.
Collapse
|
19
|
Alvite G, Esteves A. Lipid binding proteins from parasitic platyhelminthes. Front Physiol 2012; 3:363. [PMID: 22988444 PMCID: PMC3439653 DOI: 10.3389/fphys.2012.00363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023] Open
Abstract
Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.
Collapse
Affiliation(s)
- Gabriela Alvite
- Faculty of Sciences, Biochemistry Section, Department of Cell and Molecular Biology UdelaR, Montevideo, Uruguay
| | | |
Collapse
|
20
|
Cousido-Siah A, Ayoub D, Berberián G, Bollo M, Van Dorsselaer A, Debaene F, DiPolo R, Petrova T, Schulze-Briese C, Olieric V, Esteves A, Mitschler A, Sanglier-Cianférani S, Beaugé L, Podjarny A. Structural and functional studies of ReP1-NCXSQ, a protein regulating the squid nerve Na+/Ca2+ exchanger. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1098-107. [PMID: 22948910 DOI: 10.1107/s090744491202094x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
The protein ReP1-NCXSQ was isolated from the cytosol of squid nerves and has been shown to be required for MgATP stimulation of the squid nerve Na(+)/Ca(2+) exchanger NCXSQ1. In order to determine its mode of action and the corresponding biologically active ligand, sequence analysis, crystal structures and mass-spectrometric studies of this protein and its Tyr128Phe mutant are reported. Sequence analysis suggests that it belongs to the CRABP family in the FABP superfamily. The X-ray structure at 1.28 Å resolution shows the FABP β-barrel fold, with a fatty acid inside the barrel that makes a relatively short hydrogen bond to Tyr128 and shows a double bond between C9 and C10 but that is disordered beyond C12. Mass-spectrometric studies identified this fatty acid as palmitoleic acid, confirming the double bond between C9 and C10 and establishing a length of 16 C atoms in the aliphatic chain. This acid was caught inside during the culture in Escherichia coli and therefore is not necessarily linked to the biological activity. The Tyr128Phe mutant was unable to activate the Na(+)/Ca(2+) exchanger and the corresponding crystal structure showed that without the hydrogen bond to Tyr128 the palmitoleic acid inside the barrel becomes disordered. Native mass-spectrometric analysis confirmed a lower occupancy of the fatty acid in the Tyr128Phe mutant. The correlation between (i) the lack of activity of the Tyr128Phe mutant, (ii) the lower occupancy/disorder of the bound palmitoleic acid and (iii) the mass-spectrometric studies of ReP1-NCXSQ suggests that the transport of a fatty acid is involved in regulation of the NCXSQ1 exchanger, providing a novel insight into the mechanism of its regulation. In order to identify the biologically active ligand, additional high-resolution mass-spectrometric studies of the ligands bound to ReP1-NCXSQ were performed after incubation with squid nerve vesicles both with and without MgATP. These studies clearly identified palmitic acid as the fatty acid involved in regulation of the Na(+)/Ca(2+) exchanger from squid nerve.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Structural Biology and Genomics, IGBMC, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Huang L, Hu Y, Huang Y, Fang H, Li R, Hu D, Li W, Li X, Liang C, Yu X. Gene/protein expression level, immunolocalization and binding characteristics of fatty acid binding protein from Clonorchis sinensis (CsFABP). Mol Cell Biochem 2011; 363:367-76. [PMID: 22189506 DOI: 10.1007/s11010-011-1189-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/09/2011] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis fatty acid-binding protein (CsFABP) belongs to a multigene family of lipid-binding proteins and is considered to be a promising vaccine candidate for human clonorchiasis. In this study, binding characteristics of CsFABP have been examined for the first time. The recombinant CsFABP (rCsFABP) was found to bind 11-(dansylamino) undecanoic acid (DAUDA), causing a blue shift in the fluorescence emission from 543 to 531 nm with an excitation wavelength of 345 nm and a substantial increase in fluorescence intensity. Fluorimetric titration of rCsFABP with DAUDA exhibited an apparent dissociation constant (K (d)) of 1.58 ± 0.14 μM. In the competitive experiment, the rCsFABP efficiently bound saturated C(10)-C(18) fatty acids and unsaturated fatty acids (oleic acid and linoleic acid), and the latter presented the higher affinity. Furthermore, quantitative RT-PCR and western blotting analysis revealed that CsFABP mRNA and protein were differentially expressed throughout the developmental cycle stages of the parasite, which occur in the definitive host (metacercariae, adult worms, and eggs). In addition, immunolocalization assay showed that CsFABP was localized on the vitelline gland, tegument, intestine, seminal vesicle, eggs in uterus, ovary, and testicle of C. sinensis adult worm, as well as on the vitelline gland of metacercaria. Intriguingly, the surface tissue of the bile duct where C. sinensis resided in the infected Sprague-Dawley rat was also strongly labeled, implying that CsFABP may possibly mediate direct interactions with host cells as a component of excretory/secretory products.
Collapse
Affiliation(s)
- Lisi Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maddalo G, Shariatgorji M, Adams CM, Fung E, Nilsson U, Zubarev RA, Sedzik J, Ilag LL. Porcine P2 myelin protein primary structure and bound fatty acids determined by mass spectrometry. Anal Bioanal Chem 2010; 397:1903-10. [DOI: 10.1007/s00216-010-3762-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 12/01/2022]
|
23
|
Molecular characterization of EmABP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode. Infect Immun 2009; 77:5564-71. [PMID: 19805524 DOI: 10.1128/iai.00653-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cestodes are unable to synthesize de novo most of their own membrane lipids, including cholesterol, and have to take them up from the host during an infection. The underlying molecular mechanisms are so far unknown. Here we report the identification and characterization of a novel gene, Emabp, which is expressed by larval stages and adults of the fox tapeworm Echinococcus multilocularis. The encoded protein, EmABP, displays significant homologies to apolipoprotein A-I binding protein (AI-BP) of mammalian origin and to metazoan YjeF_N domain proteins. Like mammalian AI-BP, EmABP carries an export-directing signal sequence which is absent in predicted AI-BP orthologs from the related flatworms Schistosoma japonicum and Schmidtea mediterranea. Using a specific antibody and immunoprecipitation techniques, we demonstrate that EmABP is secreted into the extraparasitic environment and into the hydatid fluid of in vitro-cultivated metacestode vesicles. Furthermore, we show that apolipoprotein A-I (apoA-I), a major constituent of cholesterol-transporting high-density lipoproteins, is present in hydatid fluid. By pulldown experiments, we demonstrate that recombinantly expressed, purified EmABP interacts with purified human apoA-I and is able to precipitate apoA-I from human serum. On the basis of these features and the suggested function of AI-BP in cholesterol transport in higher eukaryotes, we propose a role for EmABP in cholesterol and lipid uptake mechanisms of larval E. multilocularis.
Collapse
|
24
|
Abstract
This review discusses 5 of my earliest papers on the biochemistry of larval Echinococcus published in Parasitology in the 1970s and 1980s. Two of the publications consider aspects of the basic biochemistry, intermediary metabolism and the regulation of respiratory pathways in E. granulosus and E. multilocularis, and emphasize the existence of inter- and intra-species variation in their general metabolism. The third reports on the detailed biochemical analysis of the tegumental surface of the protoscolex of E. granulosus, and the final 2 papers describe the genomic cloning of Echinococcus DNA fragments and their use, along with other DNA markers, in molecular identification of E. granulosus isolates collected worldwide from areas endemic for hydatid disease. A number of years have elapsed since these publications in Parasitology and, in this Centenary Issue article, I reflect briefly on some of the subsequent studies undertaken in these research areas that have advanced the field. As well, I provide brief insight on new research directions, emphasizing the impact of molecular biology and associated techniques on future studies of Echinococcus and hydatid disease.
Collapse
|
25
|
Alvite G, Canclini L, Corvo I, Esteves A. Two novel Mesocestoides vogae fatty acid binding proteins - functional and evolutionary implications. FEBS J 2007; 275:107-16. [DOI: 10.1111/j.1742-4658.2007.06179.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Janvilisri T, Likitponrak W, Chunchob S, Grams R, Vichasri-Grams S. Charge modification at conserved positively charged residues of fatty acid binding protein (FABP) from the giant liver fluke Fasciola gigantica: its effect on oligomerization and binding properties. Mol Cell Biochem 2007; 305:95-102. [PMID: 17594059 DOI: 10.1007/s11010-007-9532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/08/2007] [Indexed: 12/21/2022]
Abstract
Fatty acid binding proteins (FABPs) are capable of binding hydrophobic ligands with high affinity; thereby facilitating the cellular uptake and intracellular trafficking of fatty acids. In this study, functional characteristics of a cytoplasmic FABP from the giant liver fluke Fasciola gigantica (FgFABP) were determined. Binding of a fluorescent fatty acid analogue 11-[[5-dimethy aminonaphtalene-1-sulphonyl] amino] undecanoic acid (DAUDA) to FgFABP resulted in changes in the emission spectrum. The optimal excitation wavelength and maximum emission of fluorescence for binding activities with DAUDA were 350 nm and 550 nm, respectively. The binding activity for DAUDA was determined from titration experiments and revealed a Kd value of 2.95+/-0.54 microM. Furthermore, we found that cross-linking profile of FgFABP with dithiobis-(succinimidylpropionate) (DSP) in the presence of DAUDA resulted in increased formation of higher-ordered oligomers compared to that in the absence of DAUDA. We also replaced five highly conserved positively charged residues (K9, K58, K91, R107 and K131) with alanine and studied their oligomerization and binding properties of the modified FgFABPs. The obtained data demonstrate that these residues do not appear to be involved in oligomerization. However, the K58A and R107A substitutions exhibited a reduction in binding affinities. K91A and R107A revealed an increase in maximal specific binding.
Collapse
Affiliation(s)
- Tavan Janvilisri
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
27
|
Esteves A, Ehrlich R. Invertebrate intracellular fatty acid binding proteins. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:262-274. [PMID: 16423563 DOI: 10.1016/j.cbpc.2005.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/24/2005] [Accepted: 10/30/2005] [Indexed: 02/02/2023]
Abstract
Fatty acid binding proteins are multigenic cytosolic proteins largely distributed along the zoological scale. Their overall identity at primary and tertiary structure is conserved. They are involved in the uptake and transport of hydrophobic ligands to different cellular fates. The precise functions of each FABP type remain imperfectly understood, since sub-specialization of functions is suggested. Evolutionary studies have distinguished major subfamilies that could have been derived from a common ancestor close to vertebrate/invertebrate split. Since the isolation of the first invertebrate FABP from Schistocerca gregaria in 1990, the number of FABPs isolated from invertebrates has been increasing. Differences at the sequence level are appreciable and relationships with vertebrate FABPs are not clear, and lesser among invertebrate proteins, introducing some uncertainty to infer functional relatedness and phylogenetic relationships. The objective of this review is to summarize the information available on invertebrate FABPs to elucidate their mutual relationships, the relationship with their vertebrate counterparts and putative functions. Structure, gene structure, putative functions, expression studies and phylogenetic relationships with vertebrate counterparts are analyzed. Previous suggestions of the ancestral position concerning the heart-type of FABPs are reinforced by evidence from invertebrate models.
Collapse
Affiliation(s)
- Adriana Esteves
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay.
| | - Ricardo Ehrlich
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay
| |
Collapse
|