1
|
Tallandier V, Merlen L, Chalansonnet M, Boucard S, Thomas A, Venet T, Pouyatos B. Three-dimensional cultured ampullae from rats as a screening tool for vestibulotoxicity: Proof of concept using styrene. Toxicology 2023; 495:153600. [PMID: 37516305 DOI: 10.1016/j.tox.2023.153600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Numerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity. Here, we present an organotypic model of cultured ampullae harvested from rat neonates. When cultured in a gelatinous matrix, ampulla explants form an enclosed compartment that progressively fills with a high-potassium (K+) endolymph-like fluid. Morphological analyses confirmed the presence of a number of cell types, sensory epithelium, secretory cells, and canalar cells. Treatments with inhibitors of potassium transporters demonstrated that the potassium homeostasis mechanisms were functional. To assess the potential of this model to reveal the toxic effects of chemicals, explants were exposed for either 2 or 72 h to styrene at a range of concentrations (0.5-1 mM). In the 2-h exposure condition, K+ concentration was significantly reduced, but ATP levels remained stable, and no histological damage was visible. After 72 h exposure, variations in K+ concentration were associated with histological damage and decreased ATP levels. This in vitro 3D neonatal rat ampulla model therefore represents a reliable and rapid means to assess the toxic properties of industrial compounds on this vestibular tissue, and can be used to investigate the specific underlying mechanisms.
Collapse
Affiliation(s)
- V Tallandier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - L Merlen
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - M Chalansonnet
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France.
| | - S Boucard
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - A Thomas
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - T Venet
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - B Pouyatos
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| |
Collapse
|
2
|
Nadri H, Khavanin A, Kim IJ, Akbari M, Nadri F. Association between Simultaneous Occurrence of Occupational Noise-Induced Hearing Loss and Noise-Induced Vestibular Dysfunction: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:683-694. [PMID: 37551182 PMCID: PMC10404310 DOI: 10.18502/ijph.v52i4.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 08/09/2023]
Abstract
Background Background: Because of functional and structural similarities between the cochlea and vestibular sensory receptors, vestibular dysfunction could be accompanied by noise-induced hearing loss (NIHL) due to occupational noise exposure. We aimed to evaluate the occurrence of vestibular dysfunction (VD) in individuals with NIHL and occupational noise exposure. Methods A systematic literature research was carried out within the databases of PubMed, Scopus, Science Direct, and Web of Science for published articles between 1980 and Jan 5, 2023 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The methodological quality of the included systematic reviews was assessed with the Joanna Briggs Institute (JBI) checklist. Vestibular system dysfunction parameters were considered as primary outcomes in subjects with NIHL. Results We reviewed the evidence (from 19 eligible articles) for VD from noise-induced damage to peripheral vestibular structures. VD can occur after occupational noise exposure or concomitantly with NIHL. Furthermore, this study showed that the saccular organ has a higher susceptibility to noise damage than the vestibular organs of the utricle and semicircular canals (SCCs). Conclusion Our results support the role of occupational noise exposure and NIHL as risk factors for developing VD. Further research is needed to investigate the association between the occurrence of VD due to occupational noise exposure or concomitantly with NIHL.
Collapse
Affiliation(s)
- Hamed Nadri
- Department of Occupational Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - In-Ju Kim
- Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mehdi Akbari
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, Faculty of Health, Kermanshah Medical Sciences University, Kermanshah, Iran
| |
Collapse
|
3
|
Afsar T, Razak S, Trembley JH, Khan K, Shabbir M, Almajwal A, Alruwaili NW, Ijaz MU. Prevention of Testicular Damage by Indole Derivative MMINA via Upregulated StAR and CatSper Channels with Coincident Suppression of Oxidative Stress and Inflammation: In Silico and In Vivo Validation. Antioxidants (Basel) 2022; 11:2063. [PMID: 36290786 PMCID: PMC9598787 DOI: 10.3390/antiox11102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cis-diamminedichloroplatinum (II) (CDDP) is a widely used antineoplastic agent with numerous associated side effects. We investigated the mechanisms of action of the indole derivative N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide (MMINA) to protect against CDDP-induced testicular damage. Five groups of rats (n = 7) were treated with saline, DMSO, CDDP, CDDP + MMINA, or MMINA. Reproductive hormones, antioxidant enzyme activity, histopathology, daily sperm production, and oxidative stress markers were examined. Western blot analysis was performed to access the expression of steroidogenic acute regulatory protein (StAR) and inflammatory biomarker expression in testis, while expression of calcium-dependent cation channel of sperm (CatSper) in epididymis was examined. The structural and dynamic molecular docking behavior of MMINA was analyzed using bioinformatics tools. The construction of molecular interactions was performed through KEGG, DAVID, and STRING databases. MMINA treatment reversed CDDP-induced nitric oxide (NO) and malondialdehyde (MDA) augmentation, while boosting the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the epididymis and testicular tissues. CDDP treatment significantly lowered sperm count, sperm motility, and epididymis sperm count. Furthermore, CDDP reduced epithelial height and tubular diameter and increased luminal diameter with impaired spermatogenesis. MMINA rescued testicular damage caused by CDDP. MMINA rescued CDDP-induced reproductive dysfunctions by upregulating the expression of the CatSper protein, which plays an essential role in sperm motility, MMINA increased testosterone secretion and StAR protein expression. MMINA downregulated the expression of NF-κB, STAT-3, COX-2, and TNF-α. Hydrogen bonding and hydrophobic interactions were predicted between MMINA and 3β-HSD, CatSper, NF-κβ, and TNFα. Molecular interactome outcomes depicted the formation of one hydrogen bond and one hydrophobic interaction between 3β-HSD that contributed to its strong binding with MMINA. CatSper also made one hydrophobic interaction and one hydrogen bond with MMINA but with a lower binding affinity of -7.7 relative to 3β-HSD, whereas MMINA made one hydrogen bond with NF-κβ residue Lys37 and TNF-α reside His91 and two hydrogen bonds with Lys244 and Thr456 of STAT3. Our experimental and in silico results revealed that MMINA boosted the antioxidant defense mechanism, restored the levels of fertility hormones, and suppressed histomorphological alterations.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Janeen H. Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
4
|
Ding D, Qi W, Jiang H, Salvi R. Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 2021; 411:108358. [PMID: 34607211 DOI: 10.1016/j.heares.2021.108358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Excess release of glutamate at the inner hair cell-type I auditory nerve synapse results in excitotoxicity characterized by rapid swelling and disintegration of the afferent synapses, but in some cases, the damage expands to the spiral ganglion soma. Cochlear excitotoxic damage is largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and kainate receptor (KAR) and potentially N-methyl-D-aspartate receptors (NMDAR). Because these receptors are developmentally regulated, the pattern of excitotoxic damage could change during development. To test this hypothesis, we compared AMPAR, NMDAR and KAR immunolabeling and excitotoxic damage patterns in rat postnatal day 3 (P3) and adult cochlear cultures. At P3, AMPAR and KAR immunolabeling, but not NMDAR, was abundantly expressed on peripheral nerve terminals adjacent to IHCs. In contrast, AMPAR, KAR and NMDAR immunolabeling was minimal or undetectable on the SGN soma. In adult rats, however, AMPAR, KAR and NMDAR immunolabeling occurred on both peripheral nerve terminals near IHCs as well as the soma of SGNs. High doses of Glu and KA only damaged peripheral nerve terminals near IHCs, but not SGNs, at P3, consistent with selective expression of AMPAR and KAR expression on the terminals. However, in adults, Glu and KA damaged both peripheral nerve terminals near IHCs and SGNs both of which expressed AMPAR and KAR. These results indicate that cochlear excitotoxic damage is closely correlated with structures that express AMPAR and KAR.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Weidong Qi
- Department of Otolaryngology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
6
|
Ding D, Zhang J, Li W, Li D, Yu J, Wu X, Qi W, Liu F, Jiang H, Shi H, Sun H, Li P, Huang W, Salvi R. Can auditory brain stem response accurately reflect the cochlear function? J Neurophysiol 2020; 124:1667-1675. [PMID: 33026904 DOI: 10.1152/jn.00233.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Auditory brain stem response (ABR) and compound action potential (CAP) recordings have been used in animal research to determine hearing sensitivity. Because of the relative ease of testing, the ABR test has been more commonly used in assessing cochlear lesions than the CAP test. The purpose of this experiment is to examine the difference between these two methods in monitoring the dynamic changes in auditory function after cochlear damage and in detecting asymmetric hearing loss due to unilateral cochlear damage. ABR and CAP were measured in two models of cochlear damage: acoustic trauma induced by exposure to a narrowband noise centered at 4 kHz (2,800-5,600 Hz) at 105 dB sound pressure level for 5 h in chinchillas and unilateral cochlear damage induced by surgical destruction of one cochlea in guinea pigs. Cochlear hair cells were quantified after completing the evoked potential testing. In the noise-damaged model, we found different recovery patterns between ABR and CAP. At 1 day after noise exposure, the ABR and CAP assessment revealed a similar level of threshold shifts. However, at 30 days after noise exposure, ABR thresholds displayed an average of 20-dB recovery, whereas CAP thresholds showed no recovery. Notably, the CAP threshold signifies the actual condition of sensory cell pathogenesis in the cochlea because sensory cell death is known to be irreversible in mammals. After unilateral cochlear damage, we found that both CAP and ABR were affected by cross-hearing when testing the damaged ear with the testing stimuli delivered directly into the canal of the damaged ear. When cross-hearing occurred, ABR testing was not able to reveal the presence of cross-hearing because the ABR waveform generated by cross-stimulation was indistinguishable from that generated by the test ear (damaged ear), should the test ear be intact. However, CAP testing can provide a warning sign, since the typical CAP waveform became an ABR-like waveform when cross-hearing occurred. Our study demonstrates two advantages of the CAP test over the ABR test in assessing cochlear lesions: contributing evidence for the occurrence of cross-hearing when subjects have asymmetric hearing loss and providing a better assessment of the progression of cochlear pathogenesis.NEW & NOTEWORTHY Auditory brain stem response (ABR) is more commonly used to evaluate cochlear lesions than cochlear compound action potential (CAP). In a noise-induced cochlear damage model, we found that the reduced CAP and enhanced ABR caused the threshold difference. In a unilateral cochlear destruction model, a shadow curve of the ABR from the contralateral healthy ear masked the hearing loss in the destroyed ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,The Third People's Hospital of Chengdu, Chengdu, China.,Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhui Zhang
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Wenjuan Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jintao Yu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Wu
- Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Liu
- Beijing Hospital and National Center of Gerontology, Department of Otolaryngology, Beijing, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| | - Haibo Shi
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Sun
- Xiangya Hospital, Central South University, Changsha, China
| | - Peng Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
7
|
Dkhar B, Bhatia A, Saikia PP, Pyngrope H. Improved postauricular surgical approach to the round window of rats. J Neurosci Methods 2020; 330:108481. [PMID: 31669291 DOI: 10.1016/j.jneumeth.2019.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Research using rat as an in-vivo model has played an important role in otological research. The rat ear anatomy has been described; however, detailed surgical procedures to access the temporal bone are limited. The authors present a technique to approach the inner ear of rat that was standardized by cadaveric dissections and later replicated in living animals. METHODS Adult Wistar albino rats were dissected via the post-auricular approach. The emphasis was on early identification of the facial nerve that formed a reliable landmark for the tympanic bulla, which in turn houses the round window and stapedial artery. The point of identification of facial nerve was postero-inferior to the external auditory meatus. The procedure was then repeated in living animals. RESULTS Seventeen cadaveric rats were dissected. Initially, the investigators attempted to identify the facial nerve at its crossing over the external auditory meatus. However, that method was found to be unsatisfactory. The facial nerve was then attempted to be identified in its course postero-inferior to the external auditory meatus. The technique improved drastically, and the facial nerve was identified promptly and reliably. The procedure was then repeated in seven living rats under general anaesthesia. The major issues encountered were bleeding from the stapedial artery, hematoma of the pinna in one rat. CONCLUSION This study suggests that the post-auricular approach is a feasible and less time consuming route for round window drug delivery experiments in Wistar albino rats. Recognition of anatomical landmarks, particularly the facial nerve is the key to surgery.
Collapse
Affiliation(s)
- Barilin Dkhar
- Department of ENT, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS), Shillong, 793018, Meghalaya, India
| | - Abhijeet Bhatia
- Department of ENT, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS), Shillong, 793018, Meghalaya, India.
| | - Pranjal Pratim Saikia
- Department of Pharmacology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS), Shillong, 793018, Meghalaya, India
| | - Haphidasara Pyngrope
- Department of ENT, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS), Shillong, 793018, Meghalaya, India
| |
Collapse
|
8
|
Abd El Raouf HHH, Galhom RA, Ali MHM, Nasr El-Din WA. Harderian gland-derived stem cells as a cytotherapy in a guinea pig model of carboplatin-induced hearing loss. J Chem Neuroanat 2019; 98:139-152. [PMID: 31047945 DOI: 10.1016/j.jchemneu.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stem cells therapy of hearing loss is a challenging field due to lacking self-regenerative capacity of cochlea. Harderian gland of guinea pigs was thought to harbour a unique type of progenitors which could restore the damaged cochlear tissues. THE AIM of this study was to isolate Harderian gland derived stem cells (HG-SCs) and investigate their efficacy in restoring the damaged cochlear tissue in carboplatin-induced hearing loss. METHODOLOGY Sixty female and 10 male pigmented guinea pigs were used; the male animals were HG-SCs donors, while the females were assigned into 3 groups; control, hearing loss (HL) and HG-SC-treated groups. Auditory reflexes were assessed throughout the study. The animals were euthanized 35 days after HG-SCs transplantation, the cochleae were extracted and processed for assessment by light microscope and scanning electron microscope. Morphometric assessment of stria vascularis thickness, hair cells and spiral ganglia neuronal number and optical density of TLR4 expression were done. RESULTS The isolated HG-SCs had the same morphological and phenotypical character as mesenchymal stem cells. HL group revealed destruction of organ of Corti, stria vascularis and spiral ganglion with decreased morphometric parameters. Restoration of both cochlear structure and function was observed in HG-SC-treated group along with a significant increase in IHCs, OHCs numbers, stria vascularis thickness and spiral ganglionic cell count to be close to the values of control group. CONCLUSION The isolated HG-SCs were proved to restore structure and function of cochlea in guinea pig model of hearing loss.
Collapse
Affiliation(s)
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona H Mohammed Ali
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Amin Nasr El-Din
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Anatomy Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Ye H, Xing Y, Zhang L, Zhang J, Jiang H, Ding D, Shi H, Yin S. Bilirubin-induced neurotoxic and ototoxic effects in rat cochlear and vestibular organotypic cultures. Neurotoxicology 2018; 71:75-86. [PMID: 30578813 DOI: 10.1016/j.neuro.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Exposure to high levels of bilirubin in hyperbilirubinemia patients and animal models can result in sensorineural deafness. However, the mechanisms underlying bilirubin-induced damage to the inner ear, including the cochlear and vestibular organs, remain unknown. The present analyses of cochlear and vestibular organotypic cultures obtained from postnatal day 3 rats exposed to bilirubin at varying concentrations (0, 10, 50, 100, or 250 μM) for 24 h revealed that auditory nerve fibers (ANFs) and vestibular nerve endings were destroyed even at low doses (10 and 50 μM). Additionally, as the bilirubin dose increased, spiral ganglion neurons (SGNs) and vestibular ganglion neurons (VGNs) exhibited gradual shrinkage in conjunction with nuclei condensation or fragmentation in a dose-dependent manner. The loss of cochlear and vestibular hair cells (HCs) was only evident in explants treated with the highest concentration of bilirubin (250 μM), and bilirubin-induced major apoptosis most likely occurred via the extrinsic apoptotic pathway. Thus, the present results indicate that inner ear neurons and fibers were more sensitive to, and exhibited more severe damage following, bilirubin-induced neurotoxicity than sensory HCs, which illustrates the underlying causes of auditory neuropathy and vestibulopathy in hyperbilirubinemia patients.
Collapse
Affiliation(s)
- Haibo Ye
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Yazhi Xing
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Ling Zhang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| | - Jianhui Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, PR China
| | - Haiyan Jiang
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China; Center for Hearing and Deafness, Department of Communicative Disorders and Sciences State, University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Haibo Shi
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China.
| | - Shankai Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
10
|
Abstract
Ototoxicity diagnosis and management has historically been approached using a variety of methods. However, in recent years a consensus on useful and practical approaches has been developed through clinical guidelines of the American Speech Language Hearing Association, the American Academy of Audiology, and multiple clinical trials published in peer-reviewed literature. Some of the guidelines and approaches are used to detect and monitor ototoxicity, while others are used to grade adverse events. Some of the audiologic measures are primary, while others are adjunct measures and may be tailored to the specific needs of the patient or clinical trial. For some types of monitoring, such as drug-induced tinnitus or dizziness, validated paper survey instruments can be both sensitive and easy for fragile patients. This review addresses the characteristics of some of the most common clinical ototoxins and the most common methods for detecting and monitoring ototoxicity in clinical practice and clinical trials.
Collapse
Affiliation(s)
- Kathleen C M Campbell
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, PO Box 9626, Springfield, IL, 62704-9626, USA.
| | - Colleen G Le Prell
- Callier Center for Communication Disorders, University of Texas at Dallas, 1966 Inwood Road, Dallas, TX, 75235, USA
| |
Collapse
|
11
|
Ding D, Jiang H, Zhang J, Xu X, Qi W, Shi H, Yin S, Salvi R. Cisplatin-induced vestibular hair cell lesion-less damage at high doses. J Otol 2018; 13:115-121. [PMID: 30671086 PMCID: PMC6335437 DOI: 10.1016/j.joto.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/04/2022] Open
Abstract
Cisplatin, a widely used anticancer drug, damages hair cells in cochlear organotypic cultures at low doses, but paradoxically causes little damage at high doses resulting in a U-shaped dose-response function. To determine if the cisplatin dose-response function for vestibular hair cells follows a similar pattern, we treated vestibular organotypic cultures with doses of cisplatin ranging from 10 to 1000 μM. Vestibular hair cell lesions progressively increased as the dose of cisplatin increased with maximum damage occurring around 50–100 μM, but the lesions progressively decreased at higher doses resulting in little hair cell loss at 1000 μM. The U-shaped dose-response function for cisplatin-treated vestibular hair cells in culture appears to be regulated by copper transporters, Ctr1, ATP7A and ATP7B, that dose-dependently regulate the uptake, sequestration and extrusion of cisplatin.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, USA.,Department of Otolaryngology Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, USA
| | - Jianhui Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, China
| | | | - Weidong Qi
- Department of Otolaryngology Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, USA.,Department of Audiology and Speech-Language Pathology, Asia University, China
| |
Collapse
|
12
|
Seigel GM, Manohar S, Bai YY, Ding D, Salvi R. An immortalized microglial cell line (Mocha) derived from rat cochlea. Mol Cell Neurosci 2017; 85:202-210. [PMID: 29109020 DOI: 10.1016/j.mcn.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 01/18/2023] Open
Abstract
Microglia are glial-immune cells that are essential for the function and survival of the central nervous system. Microglia not only protect neural tissues from immunological insults, but also play a critical role in neural development and repair. However, little is known about the biology of microglia in the cochlea, the auditory portion of the inner ear. In this study, we detected TMEM119+, CD11b+, CD45+ and Iba1+ populations of cells in the rat cochlea, particularly in Rosenthal's canal, inner sulcus and stria vascularis. Next, we isolated and enriched the population of CD11b+ cells from the cochlea and immortalized these cells with the 12S E1A gene of adenovirus in a replication-incompetent retroviral vector to derive a novel microglial cell line, designated Mocha (microglia of the cochlea). The resulting Mocha cells express a number of markers consistent with microglia and respond to lipopolysaccharide (LPS) stimulation by upregulation of genes (Cox2, ICAM-1, Il6r, Ccl2, Il13Ra and Il15Ra) as well as releasing cytokines (IL-1beta, IL-12, IL-13 and RANTES). As evidence of microglial function, Mocha cells phagocytose fluorescent beads at 37°C, but not at 4°C. The expression pattern of microglial markers in Mocha cells suggests that immortalization leads to a more primitive phenotype, a common phenomenon in immortalized cell lines. In summary, Mocha cells display key characteristics of microglia and are now available as a useful model system for the study of cochlear microglial behavior, both in vitro and in vivo.
Collapse
Affiliation(s)
- G M Seigel
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - S Manohar
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - Y Y Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - D Ding
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - R Salvi
- University at Buffalo, Center For Hearing & Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
13
|
Gao K, Ding D, Sun H, Roth J, Salvi R. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 2017; 32:603-613. [PMID: 28656549 PMCID: PMC5711550 DOI: 10.1007/s12640-017-9773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.
Collapse
Affiliation(s)
- Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Jerome Roth
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Richard Salvi
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Yu J, Ding D, Sun H, Salvi R, Roth JA. Trimethyltin-induced cochlear degeneration in rat. J Otol 2016; 11:118-126. [PMID: 29937820 PMCID: PMC6002597 DOI: 10.1016/j.joto.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Trimethyltin (TMT) is an occupational and environmental health hazard behaving as a potent neurotoxin known to affect the central nervous system as well as the peripheral auditory system. However, the mechanisms underlying TMT-induced ototoxicity are poorly understood. To elucidate the effects of TMT on the cochlea, a single injection of 4 or 8 mg/kg TMT was administered intraperitoneally to adult rats. The compound action potential (CAP) threshold was used to assess the functional status of the cochlea and histological techniques were used to assess the condition of the hair cells and auditory nerve fibers. TMT at 4 mg/kg produced a temporary CAP threshold elevation of 25–60 dB that recovered by 28 d post-treatment. Although there was no hair cell loss with the 4 mg/kg dose, there was a noticeable loss of auditory nerve fibers particularly beneath the inner hair cells. TMT at 8 mg/kg produced a large permanent CAP threshold shift that was greatest at the high frequencies. The CAP threshold shift was associated with the loss of outer hair cells and inner hair cells in the basal, high-frequency region of the cochlea, considerable loss of auditory nerve fibers and a significant loss of spiral ganglion neurons in the basal turn. Spiral ganglion neurons showed evidence of soma shrinkage and nuclear condensation and fragmentation, morphological features of apoptotic cell death. TMT-induced damage was greatest in the high-frequency, basal region of the cochlea and the nerve fibers beneath the inner hair cells were the most vulnerable structures.
Collapse
Affiliation(s)
- Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Corresponding author. Center for Hearing and Deafness, State University at Buffalo, Buffalo, NY 14214, USA. Fax: +1 716 829 2980.
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Jerome A. Roth
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
15
|
Fetoni AR, Ruggiero A, Lucidi D, De Corso E, Sergi B, Conti G, Paludetti G. Audiological Monitoring in Children Treated with Platinum Chemotherapy. Audiol Neurootol 2016; 21:203-211. [PMID: 27286730 DOI: 10.1159/000442435] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Platinum compounds constitute the standard treatment for solid tumors in pediatric oncology. The purpose of this study is to assess the impact of platinum compounds in the development of ototoxicity in children following chemotherapy. This study included 160 patients treated with cisplatin and carboplatin for malignant solid diseases from 2007 to 2014. Their audiograms were classified according to the Boston SIOP ototoxicity scale. Twenty-five percent of the children treated with platinum compounds developed ototoxicity. The incidence of ototoxicity was correlated with the type of platinum derivative (i.e. cisplatin vs. carboplatin), coadministration of both drugs and concomitant cranial radiotherapy, but not with sex and age. Cumulative dose was correlated only with the cisplatin administration. Nine patients (8.6%) showed further progression of hearing impairment after the end of chemotherapy. The low rate of ototoxicity suggests the pivotal role of auditory monitoring in children treated with platinum compounds in order to be able to identify hearing loss at an early stage and to provide, jointly with pediatric oncologists, strategies to reduce further progression of cochlear toxicity.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Otolaryngology, Head and Neck Surgery, A. Gemelli Hospital, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Zeng S, Sun X, Chen Z, Yu D, Chen B, Yin S. Low, but Not High, Doses of Cisplatin Damage Cochlear Hair Cells in C57 Mouse Organotypic Cultures. ORL J Otorhinolaryngol Relat Spec 2016; 78:177-86. [PMID: 27270730 DOI: 10.1159/000446189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
AIMS The purpose of this study was to investigate the characteristics of cisplatin-induced C57 mouse cochlear hair cell damage in vitro. METHODS Forty-seven cochleae harvested from 2- to 4-day-old C57 mice were used. Forty specimens were treated with different concentrations of cisplatin (10, 25, 50, 100, 400, and 1,000 μmol/l) for 48 h. The remaining seven specimens were used as a control group. RESULTS The rate of hair cell loss increased from 14.5 to 78.4% over cisplatin concentrations of 10 to 100 μmol/l, whereas hair cell loss decreased to 48.8 and 8.77% at concentrations of 400 and 1,000 μmol/l, respectively. Apoptosis was detected by DAPI staining in the areas of hair cell damage. Hair cell loss rates differed significantly among the cisplatin-treated groups. Linear regression analysis of cisplatin dose versus hair cell number showed a significant negative correlation for cisplatin doses up to 100 μmol/l and a positive correlation with further increases up to 1,000 μmol/l. CONCLUSIONS We conclude that cisplatin-induced hair cell damage was concentration dependent only up to a certain dose and that injury resistance may occur in cochlear cells treated with higher doses of cisplatin.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
As most gene sequences and functional structures of internal organs in rats have been well studied, rat models are widely used in experimental medical studies. A large number of descriptions and atlas of the rat temporal bone have been published, but some detailed anatomy of its surface and inside structures remains to be studied. By focusing on some unique characteristics of the rat temporal bone, the current paper aims to provide more accurate and detailed information on rat temporal bone anatomy in an attempt to complete missing or unclear areas in the existed knowledge. We also hope this paper can lay a solid foundation for experimental rat temporal bone surgeries, and promote information exchange among colleagues, as well as providing useful guidance for novice researchers in the field of hearing research involving rats.
Collapse
Affiliation(s)
- Peng Li
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.,Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Kelei Gao
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| | - Dalian Ding
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.,Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| |
Collapse
|
18
|
Li P, Ding D, Gao K, Salvi R. Standardized surgical approaches to ear surgery in rats. J Otol 2015; 10:72-77. [PMID: 29937785 PMCID: PMC6002556 DOI: 10.1016/j.joto.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 03/15/2015] [Accepted: 03/30/2015] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To describe several approaches of ear surgeries for experimental studies in rats. METHODS Anesthetized rats were prepared for demonstration of various ear surgery approaches designed to optimize experimental outcomes in studies with specific goals and exposure requirements. The surgical approaches included the posterior tympanum, superior tympanum, inferior tympanum and occipital approaches. RESULTS The middle ear cavity and inner ear were successfully exposed from different angles via the mentioned surgical approaches. For example, electrode placement for recording of cochlear bioelectric responses was easily achieved through the posterior tympanum or inferior tympanum approach. Alternatively, drug delivery or gene transfection via round window membrane was most easily accomplished using the posterior tympanum approach. Cochlear perfusion of protective or ototoxic drugs was best performed using the inferior tympanum approach. Ossicular chain interruption to induce a prolonged conductive hearing loss was readily achieved using a superior tympanum approach. Lastly, surgical destruction of the endolymphatic sac to induce experimental endolymphatic hydrops was readily performed via an occipital surgical approach. CONCLUSION These standardized surgical approaches can be applied in scientific studies of the ear with different purposes covering electrophysiology, conductive hearing loss, intra-cochlear drug perfusion and experimental studies relevant to Meniere's disease.
Collapse
Affiliation(s)
- Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| | - Kelei Gao
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| | - Richard Salvi
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| |
Collapse
|
19
|
Ding D, Qi W, Yu D, Jiang H, Han C, Kim MJ, Katsuno K, Hsieh YH, Miyakawa T, Salvi R, Tanokura M, Someya S. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures. PLoS One 2013; 8:e79817. [PMID: 24223197 PMCID: PMC3819247 DOI: 10.1371/journal.pone.0079817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. PRINCIPAL FINDINGS In this study, we show that the coenzyme NAD(+), known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+) protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+) reduced the levels of these oxidative stress and apoptosis markers. CONCLUSIONS/SIGNIFICANCE Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Weidong Qi
- Department of Otolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongzhen Yu
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Chul Han
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Kana Katsuno
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Yun Hua Hsieh
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
- * E-mail: (MT); (SS)
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MT); (SS)
| |
Collapse
|
20
|
Dalian D, Haiyan J, Yong F, Yongqi L, Salvi R, Someya S, Tanokura M. Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide. J Otol 2013; 8:63-71. [PMID: 25419212 DOI: 10.1016/s1672-2930(13)50009-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initially increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demonstrated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+ would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apoptotic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+ treatment greatly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+ provides significant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.
Collapse
Affiliation(s)
- Ding Dalian
- Center for Hearing and Deafness, State University of New York at Buffalo, USA ; Sixth People's Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, China ; Xiangya Hospital, Central South University, China ; Department of Applied Biological Chemistry, University of Tokyo, Japan
| | - Jiang Haiyan
- Center for Hearing and Deafness, State University of New York at Buffalo, USA
| | - Fu Yong
- The First Officiated Hospital, College of Medicine, Zhejiang University
| | - Li Yongqi
- The Third Affiliated Hospital of Sun Yat-Sen University
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, USA
| | | | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Japan
| |
Collapse
|