Liu B, Fan J, Zhang Y, Mu P, Wang P, Su J, Lai H, Li S, Feng D, Wang J, Wang H. OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants.
PLANT CELL REPORTS 2012;
31:1021-32. [PMID:
22218675 DOI:
10.1007/s00299-011-1220-x]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.
Collapse