1
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Wang ZY, Zhang Y, Chen J, Wu LD, Chen ML, Chen CM, Xu QH. Artesunate inhibits the development of PVR by suppressing the TGF-β/Smad signaling pathway. Exp Eye Res 2021; 213:108859. [PMID: 34822854 DOI: 10.1016/j.exer.2021.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is the main cause of retinal detachment surgery failure. The epithelial-mesenchymal transition (EMT) induced by transforming growth factor (TGF-β2) plays an important role in the development of PVR. Artesunate has been widely studied as a treatment for ophthalmic diseases because of its antioxidant, anti-inflammatory, antiapoptotic and antiproliferative properties. The purpose of this study was to investigate the effects of artesunate on the TGF-β2-induced EMT in ARPE-19 cells and PVR development. We found that artesunate inhibited the proliferation and contraction of ARPE-19 cells after the EMT and the autocrine effects of TGF-β2 on ARPE-19 cells. Additionally, the levels of Smad3 and p-Smad3 were increased in clinical samples, and artesunate decreased the levels of Smad3 and p-Smad3 in ARPE-19 cells treated with TGF-β2. Artesunate also inhibited the occurrence and development of PVR in vivo. In summary, artesunate inhibits the occurrence and development of PVR by inhibiting the EMT in ARPE-19 cells.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yu Zhang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Jie Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ling-Dan Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Mei-Ling Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ci-Min Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi-Hua Xu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
3
|
Shen S, Luo J, Ye J. Artesunate alleviates schistosomiasis-induced liver fibrosis by downregulation of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in hepatic stellate cells. Acta Trop 2021; 214:105781. [PMID: 33264632 DOI: 10.1016/j.actatropica.2020.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/03/2023]
Abstract
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.
Collapse
Affiliation(s)
- Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Juntao Luo
- Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jianping Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci 2016; 23:54. [PMID: 27439918 PMCID: PMC4955249 DOI: 10.1186/s12929-016-0272-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes (3.2.2.22) that possess N-glycosilase activity that irreversibly inhibits protein synthesis. RIPs have been found in plants, fungi, algae, and bacteria; their biological role is still under investigation, even if it has been recognized their role in plant defence against predators and viruses. Nevertheless, several studies on these toxins have been performed to evaluate their applicability in the biomedical field making RIPs selectively toxic towards target cells. Indeed, these molecules are extensively used to produce chimeric biomolecules, such as immunotoxins or protein/peptides conjugates. However, to date, clinical use of most of these bioconiujates has been limited by toxicity and immunogenicity. More recently, material sciences have provided a wide range of nanomaterials to be used as excellent vehicles for toxin-delivery, since they are characterized by improved stability, solubility, and in vivo pharmacokinetics. This review discusses progresses in the development of RIPs bioconjugates, with particular attention to the recent use of nanomaterials, whose appropriate design opens up a broad range of different possibilities to the use of RIPs in novel therapeutic approaches in human diseases.
Collapse
Affiliation(s)
- Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
5
|
Wang C, Xuan X, Yao W, Huang G, Jin J. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats. Mol Med Rep 2015; 12:1291-7. [PMID: 25816117 DOI: 10.3892/mmr.2015.3500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine whether artesunate has beneficial effects on bleomycin-induced pulmonary fibrosis in rats and to examine the possible mechanisms underlying these effects. All experiments were performed with male Sprague Dawley rats weighing 180-250 g. Animals were randomly divided into four experimental groups that were administered either saline alone, artesunate alone, bleomycin alone or bleomycin + artesunate. Lung histopathology was investigated by hematoxylin and eosin staining and Masson staining. Lung profibrotic molecules were analyzed by reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry. In rats treated with artesunate, pulmonary fibrosis induced by bleomycin was significantly reduced. Administration of artesunate significantly improved bleomycin-induced morphological alterations. Profibrotic molecules, including transforming growth factor-β1, Smad3, heat shock protein 47, α-smooth muscle actin and collagen type I were also reduced by artesunate. These findings suggest that artesunate improves bleomycin-induced pulmonary fibrosis pathology in rats possibly by inhibiting profibrotic molecules associated with pulmonary fibrosis.
Collapse
Affiliation(s)
- Changming Wang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiuping Xuan
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Wenmin Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Guojin Huang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
7
|
Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5:1486-502. [PMID: 23965432 PMCID: PMC3760048 DOI: 10.3390/toxins5081486] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| | - David FitzGerald
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| |
Collapse
|