1
|
Londzin P, Zych M, Janas A, Siudak S, Folwarczna J. Effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors, dapagliflozin and canagliflozin, on the musculoskeletal system in an experimental model of diabetes induced by high-fat diet and streptozotocin in rats. Biomed Pharmacother 2025; 184:117912. [PMID: 39955854 DOI: 10.1016/j.biopha.2025.117912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
The effect of SGLT2 inhibitors, a new group of antidiabetic drugs, on the skeletal system is a matter of debate. There are concerns that they may unfavorably affect bones. The aim of the study was to investigate the effects of dapagliflozin and canagliflozin on musculoskeletal system in an experimental rat model of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). The experiments were carried out on mature female rats. To induce diabetes, STZ was administered 2 weeks after the introduction of HFD. Administration of dapagliflozin (1.4 mg/kg p.o.) or canagliflozin (4.2 mg/kg p.o.) started 1 week after the STZ injection, and lasted 4 weeks. Skeletal muscle mass and strength, serum bone turnover marker concentration and other biochemical parameters, and bone mass, density, histomorphometric parameters and mechanical properties were determined. Diabetes induced decreases in skeletal muscle mass and osteoporotic changes, including decreases in bone density, and worsening of the histomorphometric parameters and cancellous bone mechanical properties. The SGLT2 inhibitors decreased glycemia and other diabetes-induced metabolic changes, and counteracted only some unfavorable effects of diabetes on bones. The effects of dapagliflozin and canagliflozin on metabolic parameters were similar, whereas there were some differences in their effects on the skeletal system. The study demonstrated possibility of differential skeletal effects of different SGLT2 inhibitors in diabetic conditions, indicating the need for caution concerning their use in patients at risk of bone fractures.
Collapse
MESH Headings
- Animals
- Canagliflozin/pharmacology
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Benzhydryl Compounds/pharmacology
- Diet, High-Fat/adverse effects
- Glucosides/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/chemically induced
- Female
- Streptozocin
- Rats
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Bone Density/drug effects
- Rats, Wistar
- Musculoskeletal System/drug effects
- Musculoskeletal System/metabolism
- Musculoskeletal System/pathology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/chemically induced
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Aleksandra Janas
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Szymon Siudak
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| |
Collapse
|
2
|
Du Q, Wang Q, Wang Y, Zhao C, Pan J. Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis. J Dent Sci 2025; 20:539-552. [PMID: 39873080 PMCID: PMC11762246 DOI: 10.1016/j.jds.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement. Materials and methods In vitro, effect of PRO on zoledronic acid (ZA)-pretreated bone marrow mesenchymal stem cells (BMSCs) was detected by cell counting kit-8, alkaline phosphatase (ALP) staining, alizarin red staining, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, forty mice were divided into four groups: control, ZA, PRO, and ZA-PRO. The maxillary extraction sockets sides were analyzed with micro-CT and histomorphometry. Hematoxylin-eosin (H&E), Masson staining, immunofluorescence staining of ALP, bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2) and TUNEL staining were performed. Results PRO increased proliferation and osteogenic differentiation of BMSCs. PRO stimulated bone formation and facilitated the healing process in zoledronic acid-induced osteonecrosis of jaw in mouse model. Compared with ZA group, control and PRO group showed more BMP2+, RUNX2+, and ALP+ cells (P < 0.05). However, PRO rescued the decreased expression of ALP, RUNX2, BMP2 due to ZA and decreased the expression of TUNEL (P < 0.05). Conclusion The findings suggest that propranolol may offer a promising preventive strategy against BRONJ by enhancing bone regeneration. This research contributes to the understanding of the pathogenesis of BRONJ and opens avenues for potential treatments of BRONJ focusing on β-adrenergic signaling.
Collapse
Affiliation(s)
- Qianxin Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
4
|
Londzin P, Brudnowska A, Kurkowska K, Wilk K, Olszewska K, Ziembiński Ł, Janas A, Cegieła U, Folwarczna J. Unfavorable effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the skeletal system of nondiabetic rats. Biomed Pharmacother 2022; 155:113679. [PMID: 36099792 DOI: 10.1016/j.biopha.2022.113679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs, acting by inhibiting the reabsorption of glucose in the kidneys. They turned out to improve cardiovascular and renal outcomes not only in patients with type 2 diabetes but also in nondiabetic patients. At present, they are more and more widely used in patients without diabetes. Since there were concerns that SGLT2 inhibitors may increase fracture risk in diabetes, the aim of the study was to examine the effect of dapagliflozin and canagliflozin on the musculoskeletal system of nondiabetic, healthy rats. The experiments were carried out on mature female rats, divided into the control rats and rats treated with dapagliflozin (1.4 mg/kg p.o.) or canagliflozin (4.2 mg/kg p.o.) for 4 weeks. Serum bone turnover markers, skeletal muscle strength and mass, bone mass, density, histomorphometric parameters and mechanical properties were determined. Administration of the drugs did not affect the skeletal muscle mass and strength. There was no effect on serum bone turnover markers, and bone mass and composition. However, administration of both drugs resulted in disorders of cancellous bone microarchitecture and worsening of bone mechanical properties. In conclusion, both SGLT2 inhibitors unfavorably affected the skeletal system of healthy rats.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Agata Brudnowska
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Kurkowska
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Wilk
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Karolina Olszewska
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Łukasz Ziembiński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Janas
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
5
|
Zhong XP, Xia WF. Regulation of bone metabolism mediated by β-adrenergic receptor and its clinical application. World J Clin Cases 2021; 9:8967-8973. [PMID: 34786380 PMCID: PMC8567525 DOI: 10.12998/wjcc.v9.i30.8967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/18/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Recent studies have confirmed that β-adrenergic receptors (β-ARs) are expressed on the surface of osteoblasts and osteoclasts, and that the sympathetic nervous system can regulate bone metabolism by activating them. β-AR blockers (BBs) are commonly used in the treatment of cardiovascular diseases in the elderly. It is important to investigate whether BBs have a beneficial effect on bone metabolism in the treatment of cardiovascular diseases, so as to expand their clinical application. This article reviews the effects of BB on bone metabolism and the progress of clinical research.
Collapse
Affiliation(s)
- Xue-Ping Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Fang Xia
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
6
|
An Y, Li Z, An L, Liu Q. Effect of Curcumin on Alterations of Alveolar Bone Remodeling and Expression of Receptor Activator of Nuclear Factor- κ B Ligand in Rat Tooth During Tooth Movement. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To evaluate the effect of Curcumin on Alterations of Alveolar Bone Remodeling and Expression of RANKL in Rat Tooth during Tooth Movement. Methods: 64 SD rats were randomly divided into 4 groups, Model, Adrb2, Cur and Cur + Pro groups. The rat orthodontic teeth
movement models were established.The rats were injected corresponding reagents according to weight and were sacrificed on day 0, 7, 14 and 21. The movement distance of first molar of rats was measured by Vernier caliper.The numbers of osteoclasts were observed through TRAP staining. The change
of micro-structure of alveolar bone was evaluated by Micro-CT. Results: The trends of the distance of teeth movement and numbers of osteoclast were the same: Cur group β Adrb2 group > Model groups Cur+Pro group (P < 0.05). Micro-CT scan showed that curcumin
could reduce the bone volume fraction (BV/TV), bone trabecular density (MTPD), and increase the trabecular resolution (TB. SP). When propranolol was given at the same time, the effect of curcumin disappeared. Conclusion: Curcumin could promote the resorption of alveolar bone at the
pressure side and increase the osteoclast numbers so that the alveolar bone became looser which was beneficial to the movement of orthodontic tooth.
Collapse
Affiliation(s)
- Yang An
- Department of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| | - Zhenqiang Li
- Department of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| | - Li An
- Department of Operation, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030001, China
| | - Qingmei Liu
- Department of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
7
|
Biomechanical and Biochemical Analyses of the Effects of Propranolol on the Osseointegration of Implants. J Craniofac Surg 2020; 32:1174-1176. [PMID: 32868723 DOI: 10.1097/scs.0000000000006959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aimed to investigate the effects of systemic propranolol on the osseointegration of titanium implants. After the surgical insertion of titanium implants into the metaphyseal part of the tibiae of rats, the rats were randomly divided into three equal groups: the control (n = 8), propranolol dosage-1 (PRP-1) (n = 8), and propranolol dosage-2 (PRP-2) (n = 8) groups. In the control group, the rats received no further treatment during the 4-week experimental period after the surgery. After the surgical insertion of the implants, the rats in the PRP-1 and PRP-2 groups were given 5 mg/kg and 10 mg/kg propranolol, respectively, every 3 days for the 4-week experimental period. After the experimental period, the rats were euthanized. Blood sera were collected for biochemical analysis, and the implants and surrounding bone tissues were used for the biomechanical reverse torque analysis. One-way ANOVA and Tukey's honest significant difference test were used for statistical analysis. The student t-test was used to analyze the data obtained from the tests and the controls. There were no significant differences in the reverse torque analysis results and the biochemical parameters (alkaline phosphatase, calcium, and phosphorus) of the groups (P > 0.05). Alkaline phosphatase was, however, found to be higher in test animals compared to the controls (P < 0.05). Also, propranolol did not biomechanically affect the osseointegration of titanium implants, while alkaline phosphatase activity was higher in the test animals.
Collapse
|
8
|
Folwarczna J, Konarek N, Freier K, Karbowniczek D, Londzin P, Janas A. Effects of loratadine, a histamine H 1 receptor antagonist, on the skeletal system of young male rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3357-3367. [PMID: 31576110 PMCID: PMC6767469 DOI: 10.2147/dddt.s215337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Background Histamine H1 receptor antagonists are widely used in the treatment of allergic diseases. H1 receptors are expressed on bone cells and histamine takes part in regulation of bone metabolism. Loratadine is often prescribed to children. Purpose The aim of the present study was to investigate the effects of loratadine on the skeletal system of young rats. Material and methods Loratadine (0.5, 5, and 50 mg/kg p.o. daily) was administered for 4 weeks to male Wistar rats, 6-week-old at the start of the experiment. Bone mass, mass of bone mineral, calcium, and phosphorus content in the bone mineral of the tibia, femur, and L-4 vertebra, histomorphometric parameters of the femur, mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck, and serum levels of bone turnover markers were examined. Results Loratadine at 0.5 and 5 mg/kg did not significantly affect the skeletal system of young rats. At 50 mg/kg, loratadine decreased the femoral length, increased content of calcium and phosphorus in the bone mineral of the vertebra, and tended to improve mechanical properties of the tibial metaphysis. Conclusion High-dose loratadine slightly but significantly affected development of the skeletal system in rapidly growing rats.
Collapse
Affiliation(s)
- Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Natalia Konarek
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Karolina Freier
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Dawid Karbowniczek
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| |
Collapse
|
9
|
Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Dye JA, Ledbetter AD, Richards JE, Mauge-Lewis K, McGee MA, Kodavanti UP. Adrenergic and glucocorticoid receptor antagonists reduce ozone-induced lung injury and inflammation. Toxicol Appl Pharmacol 2017; 339:161-171. [PMID: 29247675 DOI: 10.1016/j.taap.2017.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Recent studies showed that the circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone-induced pulmonary effects through the activation of the sympathetic-adrenal-medullary (SAM) and hypothalamus-pituitary-adrenal (HPA) axes. Hence, we examined the role of adrenergic and glucocorticoid receptor inhibition in ozone-induced pulmonary injury and inflammation. Male 12-week old Wistar-Kyoto rats were pretreated daily for 7days with propranolol (PROP; a non-selective β adrenergic receptor [AR] antagonist, 10mg/kg, i.p.), mifepristone (MIFE; a glucocorticoid receptor [GR] antagonist, 30mg/kg, s.c.), both drugs (PROP+MIFE), or respective vehicles, and then exposed to air or ozone (0.8ppm), 4h/d for 1 or 2 consecutive days while continuing drug treatment. Ozone exposure alone led to increased peak expiratory flow rates and enhanced pause (Penh); with greater increases by day 2. Receptors blockade minimally affected ventilation in either air- or ozone-exposed rats. Ozone exposure alone was also associated with marked increases in pulmonary vascular leakage, macrophage activation, neutrophilic inflammation and lymphopenia. Notably, PROP, MIFE and PROP+MIFE pretreatments significantly reduced ozone-induced pulmonary vascular leakage; whereas PROP or PROP+MIFE reduced neutrophilic inflammation. PROP also reduced ozone-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 and TNF-α proteins and/or lung Il6 and Tnfα mRNA. MIFE and PROP+MIFE pretreatments reduced ozone-induced increases in BALF N-acetyl glucosaminidase activity, and lymphopenia. We conclude that stress hormones released after ozone exposure modulate pulmonary injury and inflammatory effects through AR and GR in a receptor-specific manner. Individuals with pulmonary diseases receiving AR and GR-related therapy might experience changed sensitivity to air pollution.
Collapse
Affiliation(s)
- Andres R Henriquez
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Colette N Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Janice A Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Kevin Mauge-Lewis
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Marie A McGee
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
10
|
Śliwiński L, Cegieła U, Pytlik M, Folwarczna J, Janas A, Zbrojkiewicz M. Effects of fenoterol on the skeletal system depend on the androgen level. Pharmacol Rep 2016; 69:260-267. [PMID: 28126642 DOI: 10.1016/j.pharep.2016.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. METHODS The effects of fenoterol, a selective β2-adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. RESULTS Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. CONCLUSIONS The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling.
Collapse
Affiliation(s)
- Leszek Śliwiński
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Pytlik
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Zbrojkiewicz
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Shen G, Ren H, Qiu T, Liang D, Wei Q, Tang J, Zhang Z, Yao Z, Zhao W, Jiang X. Effect of glucocorticoid withdrawal on glucocorticoid inducing bone impairment. Biochem Biophys Res Commun 2016; 477:1059-1064. [PMID: 27402272 DOI: 10.1016/j.bbrc.2016.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Glucocorticoid (GC) withdrawal after a short-term use was common in clinical practice like immediate post-transplant period. However, previous studies without setting age-control group failed to determine whether the BMD recovery was sufficient and whether it is necessary to accept anti-osteoporosis therapy after GC withdrawal. The aim of this study was to investigate the effect of GC withdrawal on bone impairment in glucocorticoid-induced osteoporosis (GIOP) rats. Twenty-four female Sprague-Dawley rats (3 months' old) were randomly divided into two treatment groups: an untreated age-control group (Con, n = 12); another group receiving a dexamethasone injection (DEXA, n = 12). Animals in the Con group were euthanized at 3rd month (M3) and 6th month (M6), respectively. Six rats in the DEXA group were euthanized at 3rd month (M3), whereas GC intervention was withdrew in the remaining animals of DEXA group, which were euthanized at the end of 6th month (M6). Bone mass, bone microarchitecture, biomechanical properties of vertebrae, morphology, serum levels of PINP and β-CTX were evaluated. Compared with the Con(M3) group, the Con(M6) group showed significantly better bone quantity, morphology and quality. Compared with the Con(M3) group, the DEXA (M3) group showed significantly lower BMC, BMD, BS/TV, BV/TV, Tb.N, Tb.Th, vBMD, bone strength, compressive displacement, energy absorption capacity, PINP levels, β-CTX levels, and damaged trabecular morphology. And the same change trend was observed in the comparison between the Con(M6) group and DEXA (M6) group. Compared with the DEXA (M3) group, the DEXA (M6) group showed significantly higher BMC, BMD and AREA, but no significant difference in BS/TV, BV/TV, SMI, Tb.N, Tb.Th, Tb.Sp, vBMD, bone strength, bone stiffness, compressive displacement, energy absorption capacity, PINP levels, β-CTX levels, and improvement in trabecular morphology was observed. These results indicate that the reverse effect of GC withdrawal for 3 months on bone impairment in GIOP rats was insufficient, which implied that related anti-osteoporosis treatment might be still necessitated after GC withdrawal in clinical setting.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hui Ren
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
12
|
Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4927035. [PMID: 26941827 PMCID: PMC4749801 DOI: 10.1155/2016/4927035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.
Collapse
|
13
|
WANG LONG, FAN JING, LIN YANSHUI, GUO YUNSHAN, GAO BO, SHI QIYUE, WEI BOYUAN, CHEN LI, YANG LIU, LIU JIAN, LUO ZHUOJING. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells. Mol Med Rep 2014; 11:2711-6. [DOI: 10.3892/mmr.2014.3099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/31/2014] [Indexed: 11/06/2022] Open
|
14
|
mRNA of cytokines in bone marrow and bone biomarkers in response to propranolol in a nutritional growth retardation model. Pharmacol Rep 2014; 66:867-73. [DOI: 10.1016/j.pharep.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 11/15/2022]
|
15
|
Sliwiński L, Folwarczna J, Pytlik M, Cegieła U, Nowińska B, Trzeciak H, Trzeciak HI. Do effects of propranolol on the skeletal system depend on the estrogen status? Pharmacol Rep 2014; 65:1345-56. [PMID: 24399731 DOI: 10.1016/s1734-1140(13)71493-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/11/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Propranolol, a nonselective β-adrenergic receptor antagonist, was reported to favorably affect the skeletal system in different animal models. The aim of the study was to investigate whether the effects of propranolol on the skeletal system depend on the estrogen status. METHODS The in vivo experiments were carried out on the following groups of mature female Wistar rats: sham-operated control rats, sham-operated rats receiving propranolol, ovariectomized (OVX) control rats, OVX rats receiving propranolol, OVX rats receiving estradiol, OVX rats receiving estradiol and propranolol. Propranolol hydrochloride (10 mg/kg po) and/or estradiol (0.1 mg/kg po) were administered daily for 4 weeks. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, and mechanical properties were examined. In vitro, effects of estradiol and propranolol on the formation of mouse osteoclasts and on the mRNA expression of genes related to osteoclastogenesis, bone formation and mineralization, as well as adrenergic and estrogen signalling in mouse osteoblasts were investigated. RESULTS AND CONCLUSION Propranolol exerted some favorable effects on the rat skeletal system in vivo, independently of the estrogen status. However, in vitro studies indicated a possibility of some antagonistic relations between the estradiol and propranolol effects.
Collapse
Affiliation(s)
- Leszek Sliwiński
- Department of Pharmacology, Medical University of Silesia, Katowice, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Folwarczna J, Janas A, Pytlik M, Śliwiński L, Wiercigroch M, Brzęczek A. Modifications of histamine receptor signaling affect bone mechanical properties in rats. Pharmacol Rep 2014; 66:93-9. [PMID: 24905313 DOI: 10.1016/j.pharep.2013.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022]
Abstract
Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status.
Collapse
Affiliation(s)
- Joanna Folwarczna
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland.
| | - Aleksandra Janas
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Maria Pytlik
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Leszek Śliwiński
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Marek Wiercigroch
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Anna Brzęczek
- Department of Pharmacology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| |
Collapse
|
17
|
Folwarczna J, Pytlik M, Zych M, Cegieła U, Kaczmarczyk-Sedlak I, Nowińska B, Śliwiński L. Favorable effect of moderate dose caffeine on the skeletal system in ovariectomized rats. Mol Nutr Food Res 2013; 57:1772-84. [DOI: 10.1002/mnfr.201300123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Joanna Folwarczna
- Department of Pharmacology; Medical University of Silesia; Katowice Poland
| | - Maria Pytlik
- Department of Pharmacology; Medical University of Silesia; Katowice Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry; Medical University of Silesia; Katowice Poland
| | - Urszula Cegieła
- Department of Pharmacology; Medical University of Silesia; Katowice Poland
| | | | - Barbara Nowińska
- Department of Pharmacology; Medical University of Silesia; Katowice Poland
| | - Leszek Śliwiński
- Department of Pharmacology; Medical University of Silesia; Katowice Poland
| |
Collapse
|
18
|
Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza ML, Trovato FM, Pichler K, Weinberg AM. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 2013; 31:274-84. [PMID: 23263781 DOI: 10.1007/s00774-012-0414-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
Abstract
Glucocorticoids are considered the most powerful anti-inflammatory and immunomodulating drugs. However, a number of side-effects are well documented in different diseases, including articular cartilage, where increases or decreases in the synthesis of hormone-dependent extracellular matrix components are seen. The objective of this study has been to test the effects of procedures or drugs affecting bone metabolism on articular cartilage in rats with prednisolone-induced osteoporosis and to evaluate the outcomes of physical activity with treadmill and vibration platform training on articular cartilage. The animals were divided into 5 groups, and bone and cartilage evaluations were performed using whole-body scans and histomorphometric analysis. Lubricin and caspase-3 expression were evaluated by immunohistochemistry, Western blot analysis and biochemical analysis. These results confirm the beneficial effect of physical activity on the articular cartilage. The effects of drug therapy with glucocorticoids decrease the expression of lubricin and increase the expression of caspase-3 in the rats, while after physical activity the values return to normal compared to the control group. Our findings suggest that it might be possible that mechanical stimulation in the articular cartilage could induce the expression of lubricin, which is capable of inhibiting caspase-3 activity, preventing chondrocyte death. We can assume that the physiologic balance between lubricin and caspase-3 could maintain the integrity of cartilage. Therefore, in certain diseases such as osteoporosis, mechanical stimulation could be a possible therapeutic treatment. With our results we can propose the hypothesis that physical activity could also be used as a therapeutic treatment for cartilage disease such as osteoarthritis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Proton pump (H+/K+-ATPase) inhibitors weaken the protective effect of alendronate on bone mechanical properties in estrogen-deficient rats. Pharmacol Rep 2012; 64:625-34. [DOI: 10.1016/s1734-1140(12)70858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/09/2012] [Indexed: 11/17/2022]
|