1
|
Siwiec M, Hess G. The use of serotonin type 7 receptor antagonists as a pharmacological intervention in chronic stress. Insights from animal studies. Int J Biochem Cell Biol 2024; 175:106647. [PMID: 39182642 DOI: 10.1016/j.biocel.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
This mini-review presents our current understanding of serotonin type 7 receptor research focusing on the possible network mechanisms underlying the behavioral action of receptor antagonists. The serotonin type 7 receptor is expressed widely throughout the nervous system and known to be involved in various cognitive and physiological mechanisms. It became a clinically significant target after the discovery that its selective antagonist SB 269970 can exert rapid-onset antidepressant effects either alone or in combination with lower doses of conventional antidepressant drugs. Further research has shown that administration of SB 269970 can effectively counteract negative neurobiological outcomes in various chronic stress paradigms. The authors hope they can introduce a wider scientific audience to this promising pharmacological target which, if successful, could in time lead to more discoveries and a better understanding of the underlying serotonin receptor biology as well as its clinical potential. HIGHLIGHTS.
Collapse
Affiliation(s)
- Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Krakow 31-343, Poland.
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| |
Collapse
|
2
|
Pałucha-Poniewiera A, Bobula B, Rafało-Ulińska A. The Antidepressant-like Activity and Cognitive Enhancing Effects of the Combined Administration of (R)-Ketamine and LY341495 in the CUMS Model of Depression in Mice Are Related to the Modulation of Excitatory Synaptic Transmission and LTP in the PFC. Pharmaceuticals (Basel) 2023; 16:ph16020288. [PMID: 37083635 PMCID: PMC9960441 DOI: 10.3390/ph16020288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
(S)-Ketamine is the first rapid-acting antidepressant drug (RAAD) introduced for the treatment of depression. However, research is still being carried out on the search for further RAADs that will be not only effective but also safe to use. Recent data have indicated that the combined administration of (R)-ketamine and the mGlu2/3 receptor antagonist LY341495 (mixRL) induces rapid and sustained effects in the chronic unpredictable mild stress (CUMS) model of depression in mice, and the use of this drug combination is associated with a low risk of undesirable effects. Considering the possible influence of stress on cortical plasticity and, on the other hand, the role of this plasticity in the mechanism of action of ketamine, we decided to investigate whether mixed RL affects synaptic plasticity in the prefrontal cortex (PFC) in the CUMS model of depression using electrophysiological techniques and explore whether these effects are related to memory impairments. Using behavioral methods, we found that a single administration of mixRL reversed CUMS-induced PFC-dependent memory deficits and alleviated depression-like effects induced by CUMS. In turn, electrophysiological experiments indicated that the amplitude of field potentials as well as paired-pulse responses in CUMS mice were increased, and mixRL was found to reverse these effects. Additionally, the magnitude of long-term potentiation (LTP) was reduced in CUMS mice, and mixRL was shown to restore this parameter. In summary, mixRL appeared to exert its antidepressant effects and cognitive enhancing effects in a mouse model of depression, at least in part, by mechanisms involving modulation of glutamatergic transmission and LTP in the PFC.
Collapse
Affiliation(s)
- Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland
- Correspondence:
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland
| | - Anna Rafało-Ulińska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland
| |
Collapse
|
3
|
Zelek-Molik A, Bobula B, Gądek-Michalska A, Chorązka K, Bielawski A, Kuśmierczyk J, Siwiec M, Wilczkowski M, Hess G, Nalepa I. Psychosocial Crowding Stress-Induced Changes in Synaptic Transmission and Glutamate Receptor Expression in the Rat Frontal Cortex. Biomolecules 2021; 11:biom11020294. [PMID: 33669305 PMCID: PMC7920072 DOI: 10.3390/biom11020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
This study demonstrates how exposure to psychosocial crowding stress (CS) for 3, 7, and 14 days affects glutamate synapse functioning and signal transduction in the frontal cortex (FC) of rats. CS effects on synaptic activity were evaluated in FC slices of the primary motor cortex (M1) by measuring field potential (FP) amplitude, paired-pulse ratio (PPR), and long-term potentiation (LTP). Protein expression of GluA1, GluN2B mGluR1a/5, VGLUT1, and VGLUT2 was assessed in FC by western blot. The body’s response to CS was evaluated by measuring body weight and the plasma level of plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and interleukin 1 beta (IL1B). CS 3 14d increased FP and attenuated LTP in M1, while PPR was augmented in CS 14d. The expression of GluA1, GluN2B, and mGluR1a/5 was up-regulated in CS 3d and downregulated in CS 14d. VGLUTs expression tended to increase in CS 7d. The failure to blunt the effects of chronic CS on FP and LTP in M1 suggests the impairment of habituation mechanisms by psychosocial stressors. PPR augmented by chronic CS with increased VGLUTs level in the CS 7d indicates that prolonged CS exposure changed presynaptic signaling within the FC. The CS bidirectional profile of changes in glutamate receptors’ expression seems to be a common mechanism evoked by stress in the FC.
Collapse
Affiliation(s)
- Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
- Correspondence: ; Tel.: +48-12-6623335
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (B.B.); (A.G.-M.); (M.S.); (G.H.)
| | - Anna Gądek-Michalska
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (B.B.); (A.G.-M.); (M.S.); (G.H.)
| | - Katarzyna Chorązka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
| | - Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
| | - Justyna Kuśmierczyk
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (B.B.); (A.G.-M.); (M.S.); (G.H.)
| | - Michał Wilczkowski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (B.B.); (A.G.-M.); (M.S.); (G.H.)
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.C.); (A.B.); (J.K.); (M.W.); (I.N.)
| |
Collapse
|
4
|
Kula J, Gugula A, Blasiak A, Bobula B, Danielewicz J, Kania A, Tylko G, Hess G. Diverse action of repeated corticosterone treatment on synaptic transmission, neuronal plasticity, and morphology in superficial and deep layers of the rat motor cortex. Pflugers Arch 2017; 469:1519-1532. [PMID: 28748319 PMCID: PMC5629232 DOI: 10.1007/s00424-017-2036-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/02/2022]
Abstract
One of the adverse effects of prolonged stress in rats is impaired performance of skilled reaching and walking tasks. The mechanisms that lead to these abnormalities are incompletely understood. Therefore, we compared the effects of twice daily repeated corticosterone injections for 7 days on miniature excitatory postsynaptic currents (mEPSCs), as well as on synaptic plasticity and morphology of layers II/III and V pyramidal neurons of the primary motor cortex (M1) of male Wistar rats. Corticosterone treatment resulted in increased frequency, but not amplitude, of mEPSCs in layer II/III neurons accompanied by increased complexity of the apical part of their dendritic tree, with no changes in the density of dendritic spines. The frequency and amplitude of mEPSCs as well as the parameters characterizing the complexity of the dendritic tree were not changed in layer V cells; however, their dendritic spine density was increased. While corticosterone treatment resulted in an increase in the amplitude of field potentials evoked in intralaminar connections within layer II/III, it did not influence field responses in layer V intralaminar connections, as well as the extent of chemically induced layer V long-term potentiation (chemLTP) by the application of tetraethylammonium (TEA, 25 mM). However, chemLTP induction in layer II/III was impaired in slices prepared from corticosterone-treated animals. These data indicate that repeated 7-day administration of exogenous corticosterone induces structural and functional plasticity in the M1, which occurs mainly in layer II/III pyramidal neurons. These findings shed light on potential sites of action and mechanisms underlying stress-induced impairment of motor functions.
Collapse
Affiliation(s)
- Joanna Kula
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Anna Gugula
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Anna Blasiak
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Bartosz Bobula
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland.,Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Smetna 12, Poland
| | - Joanna Danielewicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Alan Kania
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Grzegorz Tylko
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland
| | - Grzegorz Hess
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Gronostajowa 9, Poland. .,Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Smetna 12, Poland.
| |
Collapse
|
5
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
6
|
Danielewicz J, Trenk A, Hess G. Imipramine ameliorates early life stress-induced alterations in synaptic plasticity in the rat lateral amygdala. Behav Brain Res 2016; 317:319-326. [PMID: 27693266 DOI: 10.1016/j.bbr.2016.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two opposite forms of synaptic plasticity at the cortical and thalamic inputs to the lateral amygdala (LA). It has been demonstrated that maternal separation (MS) of rat pups results in alterations in the potential for both pathways to undergo LTP and LTD in adolescence. Imipramine, a prototypic tricyclic antidepressant, has been shown to counteract some detrimental effects of MS on rat behavior, however it is not known whether MS-induced alterations in the potential for bidirectional synaptic plasticity in the LA could be reversed by imipramine treatment. To this end, rat pups were subjected to MS (3h/day) on postnatal days (PNDs) 1-21. On each of PNDs 29-42, male rats previously subjected to MS were injected subcutaneously with imipramine (10mg/kg). Field potentials were recorded ex vivo from slices containing the LA and saturating levels of LTP and LTD were induced. At the thalamic input to the LA, both the maximum LTP and the maximum LTD were reduced in rats subjected to MS when compared to control animals, confirming earlier results. However, these effects were no longer present in rats subjected to MS and later treated with imipramine. At the cortical input in slices prepared from MS-subjected rats, an impairment of the maximum LTP and an enhancement of the maximum LTD were observed. At the cortical input in rats subjected to MS and receiving imipramine treatment, the level of LTD was comparable to control but imipramine did not restore the potential for LTP at this input. These results demonstrate that imipramine fully reverses the effects of MS in the thalamo-amygdalar pathway, however, in the cortico-amygdalar pathway the reversal of the effects of MS by imipramine is partial.
Collapse
Affiliation(s)
| | | | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Smetna street 12, Poland.
| |
Collapse
|
7
|
Kula J, Blasiak A, Czerw A, Tylko G, Sowa J, Hess G. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex. Pflugers Arch 2015; 468:679-91. [PMID: 26696244 PMCID: PMC4792354 DOI: 10.1007/s00424-015-1773-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 12/13/2015] [Indexed: 01/26/2023]
Abstract
It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic terminals in the M1 and thereby uncovers a potential mechanism underlying stress-induced motor functions impairment.
Collapse
Affiliation(s)
- Joanna Kula
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Blasiak
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Czerw
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland. .,Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
8
|
Sowa J, Bobula B, Glombik K, Slusarczyk J, Basta-Kaim A, Hess G. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats. PLoS One 2015; 10:e0119407. [PMID: 25749097 PMCID: PMC4352064 DOI: 10.1371/journal.pone.0119407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.
Collapse
Affiliation(s)
- Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bartosz Bobula
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail:
| | - Grzegorz Hess
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Bobula B, Sowa J, Hess G. Anti-interleukin-1β antibody prevents the occurrence of repeated restraint stress-induced alterations in synaptic transmission and long-term potentiation in the rat frontal cortex. Pharmacol Rep 2014; 67:123-8. [PMID: 25560585 DOI: 10.1016/j.pharep.2014.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The mechanisms of the influence of prolonged stress on glutamatergic transmission and synaptic plasticity in the cerebral cortex remain poorly understood. The purpose of this study was to determine an involvement of interleukin-1β (IL-1β) in the effects of repeated restraint stress on excitatory synaptic transmission and long-term potentiation (LTP) in the rat frontal cortex. METHODS The effects of restraint stress lasting for 10 min, repeated twice daily for 3 consecutive days were studied ex vivo in the rat frontal cortex slices prepared 24h after the last stress session. Rats received intraperitoneal injections of interleukin-1β antibody. In a separate experimental group, rats received injections of IL-1β. Field potentials were recorded in the cortical layer II/III. RESULTS In slices originating from stressed animals, the amplitude of field potentials was increased. Consistent with the previous studies, restraint stress resulted in a reduced magnitude of LTP. Similar effects were evident after administration of IL-1β. Stress-induced modifications of the glutamatergic transmission and synaptic plasticity were prevented by interleukin-1β antibody, which was administered 15 min before each restraint session. CONCLUSIONS These data point to an involvement of peripherally produced IL-1β in mediating the influence of repeated restraint stress on the functions of the frontal cortex.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Hess
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; Institute of Zoology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Tokarski K, Bobula B, Grzegorzewska-Hiczwa M, Kusek M, Hess G. Stress- and antidepressant treatment-induced modifications of 5-HT₇ receptor functions in the rat brain. Pharmacol Rep 2013; 64:1305-15. [PMID: 23406741 DOI: 10.1016/s1734-1140(12)70928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/24/2012] [Indexed: 01/07/2023]
Abstract
This paper summarizes a series of electrophysiological studies aimed at finding the effects of the activation of 5-HT(7) receptors on neuronal excitability as well as on excitatory and inhibitory synaptic transmission in the hippocampus and in the frontal cortex of the rat. These studies demonstrated that 5-HT(7) receptors play an important role in the modulation of the activity of the hippocampal network by regulating the excitability of pyramidal cells of the CA1 area, as well as via their effect on GABA and glutamatergic transmission. The reactivity of 5-HT(7) receptors in the hippocampus is decreased by repeated administration of antidepressant drugs and increased by a prolonged high level of corticosterone. More importantly, administration of antidepressant drug, imipramine, prevents the occurrence of corticosterone-induced changes in the function of hippocampal 5-HT(7) receptors. It has also been found that the blockade of 5-HT(7) receptors by the selective antagonist SB 269970, lasting for a few days, causes similar changes to those observed after long-term administration of antidepressants. Thus, it seems that the pharmacological blockade of 5-HT(7) receptors produces faster effects compared to classic antidepressant drugs. A similarity between the changes in the glutamatergic transmission induced by the blockade of 5 HT7 receptors and those caused by repeated administration of the antidepressant drug, imipramine, has also been found in the frontal cortex. It has also been shown that the changes in glutamatergic transmission and the impairment of long-term synaptic plasticity in the frontal cortex of animals subjected to repeated restraint stress are reversed by the blockade of 5-HT(7) receptors. Overall, these studies, together with the data provided by other investigators, support the hypothesis that 5-HT(7) receptor antagonists may become a prototype of a new class of antidepressant drugs. Such compounds will not function by blocking 5-HT reuptake, as many of the currently used drugs, but through a direct interaction with the 5-HT(7) receptor. This type of action is highly selective and usually does not require the occurrence of adaptive changes in neuronal functions, thus allowing for a much quicker therapeutic effect.
Collapse
Affiliation(s)
- Krzysztof Tokarski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|