1
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
2
|
Xie X, Luo C, Liang JY, Huang R, Yang JL, Li L, Li Y, Xing H, Chen H. NMDAR in bladder smooth muscle is not a pharmacotherapy target for overactive bladder in mice. PeerJ 2021; 9:e11684. [PMID: 34277150 PMCID: PMC8272467 DOI: 10.7717/peerj.11684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle-specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Yu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Li Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Linlong Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - YangYang Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Preventive treatment with dizocilpine attenuates oedema in a carrageenan model of inflammation: the interaction of glutamatergic and nitrergic signaling. Inflammopharmacology 2018; 27:121-128. [PMID: 30182184 DOI: 10.1007/s10787-018-0526-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Dizocilpine is a highly selective and potent non-competitive antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor. It is well known that dizocilpine has different neuroprotective effects in animal models of pain, epilepsy and oedema during trauma. The search for alternative antiinflammatory drugs is ongoing. We investigated the anti-oedematous effects of dizocilpine and the probable mechanism of action in a rat model that mimics local and persistent inflammation without tissue injury or damage. Male Wistar rats were injected with 100 μL of 0.5% carrageenan to the plantar surface of the hind paw. Anti-oedematous activity was assessed in the carrageenan-induced paw inflammatory oedema test with a plethysmometer. To assess possible mechanisms of dizocilpine action, we examined the effects of the selective inhibitor of neuronal [N-ω-propyl-L-arginine hydrochloride (L-NPA)] and inducible [S-methylisothiourea (SMT)] nitric oxide synthase (NOS). Dizocilpine after systemic (0.0005, 0.005 and 0.02 mg/kg, subcutaneous (s.c.)), but not after local peripheral administration, reduced the paw inflammatory oedema. The effect is not dose dependent, and the highest decrease by about 47% at the time of maximally developed oedema was achieved with 0.005 mg/kg. Intraperitoneally (i.p.) administered L-NPA (0.5, 1 and 2 mg/kg) or SMT (0.005, 0.01 and 0.015 mg/kg) before dizocilpine abolished or reduced the anti-oedematous effect of dizocilpine by about 70-85%. An acute single dose of dizocilpine administered before inducing oedema systemically reduced the development of inflammatory oedema. The mechanism of the anti-oedematous effect includes, at least partially, an increase in nitric oxide (NO) production.
Collapse
|
5
|
Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M, Bencova A. Physiology of nitric oxide in the respiratory system. Physiol Res 2018; 66:S159-S172. [PMID: 28937232 DOI: 10.33549/physiolres.933673] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the. surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways.
Collapse
Affiliation(s)
- M Antosova
- Biomedical Center Martin, Division of Respirology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Physiological Roles of Non-Neuronal NMDA Receptors. Trends Pharmacol Sci 2016; 37:750-767. [DOI: 10.1016/j.tips.2016.05.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
|
7
|
Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation. Clin Sci (Lond) 2016; 130:1939-54. [PMID: 27549113 DOI: 10.1042/cs20160530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.
Collapse
|
8
|
Anaparti V, Pascoe CD, Jha A, Mahood TH, Ilarraza R, Unruh H, Moqbel R, Halayko AJ. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness. Am J Physiol Lung Cell Mol Physiol 2016; 311:L467-80. [PMID: 27371735 DOI: 10.1152/ajplung.00382.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.
Collapse
Affiliation(s)
- Vidyanand Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; and
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Thomas H Mahood
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Ramses Ilarraza
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Helmut Unruh
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; and Section of Thoracic Surgery, University of Manitoba, Winnipeg, Canada
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Andrew J Halayko
- Department of Immunology, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; and
| |
Collapse
|
9
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|