1
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
2
|
Ahmad Khanbeigi R, Abelha TF, Woods A, Rastoin O, Harvey RD, Jones MC, Forbes B, Green MA, Collins H, Dailey LA. Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells. Biomacromolecules 2015; 16:733-42. [PMID: 25590257 DOI: 10.1021/bm501649y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjugated polymer nanoparticles are being developed for a variety of diagnostic and theranostic applications. The conjugated polymer, F8BT, a polyfluorene derivative, was used as a model system to examine the biological behavior of conjugated polymer nanoparticle formulations stabilized with ionic (sodium dodecyl sulfate; F8BT-SDS; ∼207 nm; -31 mV) and nonionic (pegylated 12-hydroxystearate; F8BT-PEG; ∼175 nm; -5 mV) surfactants, and compared with polystyrene nanoparticles of a similar size (PS200; ∼217 nm; -40 mV). F8BT nanoparticles were as hydrophobic as PS200 (hydrophobic interaction chromatography index value: 0.96) and showed evidence of protein corona formation after incubation with serum-containing medium; however, unlike polystyrene, F8BT nanoparticles did not enrich specific proteins onto the nanoparticle surface. J774A.1 macrophage cells internalized approximately ∼20% and ∼60% of the F8BT-SDS and PS200 delivered dose (calculated by the ISDD model) in serum-supplemented and serum-free conditions, respectively, while cell association of F8BT-PEG was minimal (<5% of the delivered dose). F8BT-PEG, however, was more cytotoxic (IC50 4.5 μg cm(-2)) than F8BT-SDS or PS200. The study results highlight that F8BT surface chemistry influences the composition of the protein corona, while the properties of the conjugated polymer nanoparticle surfactant stabilizer used determine particle internalization and biocompatibility profile.
Collapse
Affiliation(s)
- Raha Ahmad Khanbeigi
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London , 150 Stamford Street, London SE1 9NH, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lost in translation: what is stopping inhaled nanomedicines from realizing their potential? Ther Deliv 2014; 5:757-61. [DOI: 10.4155/tde.14.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|