1
|
Zhou Y, Liu X, Yang X, Du Laing G, Yang Y, Tack FMG, Bank MS, Bundschuh J. Effects of Platinum Nanoparticles on Rice Seedlings ( Oryza sativa L.): Size-dependent Accumulation, Transformation, and Ionomic Influence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3733-3745. [PMID: 36821792 DOI: 10.1021/acs.est.2c07734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Platinum nanoparticles (PtNPs) are increasing in the environment largely due to their wide use and application in automobile and medical industries. The mechanism of uptake behavior of different-sized PtNPs and their association with PtNPs-induced phytotoxicity to plants remains unclear. The present study investigated PtNP uptake mechanisms and phytotoxicity simultaneously to further understand the accumulation and transformation dynamics. The uptake mechanisms were investigated by comparing the uptake and toxicological effects of three different-sized PtNPs (25, 50, and 70 nm) on rice seedlings across an experimental concentration gradient (0.25, 0.5, and 1 mg/L) during germination. The quantitative and qualitative results indicated that 70 nm-sized PtNPs were more efficiently transferred in rice roots. The increase in the PtNP concentration restricted the particle uptake. Particle aggregation was common in plant cells and tended to dissolve on root surfaces. Notably, the dissolution of small particles was simultaneous with the growth of larger particles after PtNPs entered the rice tissues. Ionomic results revealed that PtNP accumulation induced element homeostasis in the shoot ionome. We observed a significant positive correlation between the PtNP concentration and Fe and B accumulation in rice shoots. Compared to particle size, the exposure concentration of PtNPs had a stronger effect on the shoot ionomic response. Our study provides better understanding of the correlation of ionomic change and NP quantitative accumulation induced by PtNPs in rice seedlings.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Liu
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yuan Yang
- College of the Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Filip M G Tack
- Department Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent B-9000, Belgium
| | - Michael S Bank
- Institute of Marine Research, Bergen NO.5817, Norway
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jochen Bundschuh
- Doctoral Program in Science, Technology, Environment, and Mathematics. Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi County 62102, Taiwan, ROC
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| |
Collapse
|
2
|
Liu N, Li Y, Liu L, Liu X, Yin Y, Qu G, Shi J, Song M, He B, Hu L, Jiang G. Administration of Silver Nasal Spray Leads to Nanoparticle Accumulation in Rat Brain Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:403-413. [PMID: 34923819 DOI: 10.1021/acs.est.1c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of commercial products containing engineered nanomaterials in realistic scenarios may lead to the accumulation of exogenous particles in brain tissues. In this study, we simulated the use of silver (Ag) nasal spray in humans using Sprague-Dawley rats at 0.04 mg/kg/day. Silver-containing particles were explicitly identified in the rat brain after the administration of nasal sprays containing colloidal Ag or silver ions (Ag+) for 2 weeks using multiple methods. The accumulation of Ag-containing particles showed a delayed effect in different brain regions of the rats, with the mass concentration of particles increasing continuously for 1-2 weeks after the termination of administration. The size of the observed Ag-containing particles extracted from the brain tissues ranged from 18.3 to 120.4 nm. Further characterization by high-resolution transmission electron microscopy with energy-dispersive spectroscopy showed that the nanoparticles comprised both Ag and sulfur (S), with Ag/S atomic ratios of 1.1-7.1, suggesting that Ag-containing particles went through a series of transformations prior to or during their accumulation in the brain. Collectively, these findings provide evidence for the accumulation and transformation of Ag-containing particles in the rat brain, indicating a realistic risk to brain health resulting from the application of Ag-containing commercial products.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wei WJ, Yang Y, Li XY, Huang P, Wang Q, Yang PJ. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 2021; 239:123117. [PMID: 34890942 DOI: 10.1016/j.talanta.2021.123117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Silver Nanoparticles (Ag-NPs), an emerging type of pollutant, might occur various physical and chemical transformations, which would affect its environmental fate, transformation and biological effects. Sulfurization is the most common conversion of Ag-NPs, accompanied by the formation of nano-silver sulfide (Ag2S-NPs). The method of Ag2S-NPs analysis and characterization is of great significance for assessing the environmental risks of Ag. In this study, cloud point extraction (CPE) and Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) were used in combination to establish a simple and reliable analysis method to quantify Ag2S-NPs in water, with the morphology unchanged. Non-Ag2S-NPs were dissociated into Ag+ firstly, and Ag2S-NPs and Ag+ were separated by CPE, followed by SP-ICP-MS analysis. The extraction rate based on particle number concentration was between (76.19 ± 0.56) % to (106.35 ± 0.00) % in environmental waters. Compared with the (76.96 ± 2.18) nm Ag2S-NPs spiked, the particle size extracted increased slightly with (94.19 ± 2.72) nm- (97.25 ± 0.22) nm as the large-size Ag2S-NPs originally presented in waters, instead of agglomeration. This method could be generally applicable to the analysis of Ag2S-NPs in waters, and provide ideas for other metal sulfide nanoparticles (MS-NPs), which has certain significance.
Collapse
Affiliation(s)
- Wen-Jing Wei
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Yuan Yang
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China
| | - Xin-Yuan Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Peng Huang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China.
| | - Ping-Jian Yang
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai, Chaoyang District, Beijing, 100012, PR China.
| |
Collapse
|
4
|
CHAO JB, WANG JR, ZHANG JQ. Accurate Determination and Characterization of Gold Nanoparticles Based on Single Particle-Inductively Coupled Plasma-Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60032-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Gao YP, Yang Y, Li L, Wei WJ, Xu H, Wang Q, Qiu YQ. Quantitative detection of gold nanoparticles in soil and sediment. Anal Chim Acta 2020; 1110:72-81. [DOI: 10.1016/j.aca.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
|
6
|
Torrent L, Marguí E, Queralt I, Hidalgo M, Iglesias M. Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. J Environ Sci (China) 2019; 83:205-216. [PMID: 31221383 DOI: 10.1016/j.jes.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 05/25/2023]
Abstract
The production of silver nanoparticles (AgNPs) has increased tremendously during recent years due to their antibacterial and physicochemical properties. As a consequence, these particles are released inevitably into the environment, with soil being the main sink of disposal. Soil interactions have an effect on AgNP mobility, transport and bioavailability. To understand AgNP adsorption processes, lab-controlled kinetic studies were performed. Batch tests performed with five different Mediterranean agricultural soils showed that cation exchange capacity and electrical conductivity are the main parameters controlling the adsorption processes. The adsorption kinetics of different sized (40, 75, 100 and 200 nm) and coated (citrate, polyvinylpyrrolidone and polyethyleneglycol (PEG)) AgNPs indicated that these nanoparticle properties have also an effect on the adsorption processes. To assess the mobility and bioavailability of AgNPs and to determine if their form is maintained during adsorption/desorption processes, loaded soils were submitted to leaching tests three weeks after batch adsorption studies. The DIN 38414-S4 extraction method indicated that AgNPs were strongly retained on soils, and single-particle inductively coupled plasma mass spectrometry confirmed that silver particles maintained their nanoform, except for 100 nm PEG-AgNPs and 40 nm citrate-coated AgNPs. The DTPA (diethylenetriaminepentaacetic acid) leaching test was more effective in extracting silver, but there was no presence of AgNPs in almost all of these leachates.
Collapse
Affiliation(s)
- Laura Torrent
- Department of Chemistry, University of Girona, C/M. Aurèlia Capmany, 69, 17003 Girona, Spain. E-mail:
| | - Eva Marguí
- Department of Chemistry, University of Girona, C/M. Aurèlia Capmany, 69, 17003 Girona, Spain. E-mail:
| | - Ignasi Queralt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona, C/M. Aurèlia Capmany, 69, 17003 Girona, Spain. E-mail:
| | - Mònica Iglesias
- Department of Chemistry, University of Girona, C/M. Aurèlia Capmany, 69, 17003 Girona, Spain. E-mail: .
| |
Collapse
|
7
|
Li L, Wang Q, Yang Y, Luo L, Ding R, Yang ZG, Li HP. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2019; 91:9442-9450. [DOI: 10.1021/acs.analchem.8b05575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha 410128, PR China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Ru Ding
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| |
Collapse
|
8
|
SUN LX, WANG W, TIAN XY, ZHANG P, QI LF, ZHENG LM. Progress in Research and Application of Micro-Laser-Induced Breakdown Spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61114-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Loula M, Kaňa A, Koplík R, Hanuš J, Vosmanská M, Mestek O. Analysis of Silver Nanoparticles Using Single-Particle Inductively Coupled Plasma – Mass Spectrometry (ICP-MS): Parameters Affecting the Quality of Results. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1459657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Martin Loula
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| | - Antonín Kaňa
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| | - Richard Koplík
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| | - Jaroslav Hanuš
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| | - Magda Vosmanská
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| | - Oto Mestek
- University of Chemistry and Technology Prague, Department of Analytical Chemistry, Prague, Czech Republic
| |
Collapse
|
10
|
Yang Y, Luo L, Li HP, Wang Q, Yang ZG, Qu ZP, Ding R. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta 2018; 182:156-163. [DOI: 10.1016/j.talanta.2018.01.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
11
|
Luo L, Yang Y, Li H, Ding R, Wang Q, Yang Z. Size characterization of silver nanoparticles after separation from silver ions in environmental water using magnetic reduced graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1215-1222. [PMID: 28892865 DOI: 10.1016/j.scitotenv.2017.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
This study involved the synthesis of magnetic reduced graphene oxide (M-rGO) using a co-precipitation method and examined its resultant adsorption properties for mixtures containing silver ions and silver nanoparticles (AgNPs). The results indicate that M-rGO preferentially adsorbs silver ions in mixtures containing AgNPs, enabling the size characterization of smaller AgNPs (<60nm) at ultra-trace concentration levels to be more attainable. The sorbents after adsorption could be easily recovered through an external magnet. The AgNPs retained in solution were characterized using single-particle ICPMS (SP-ICPMS). The adsorption behavior of silver ions on M-rGO was well fitted with the pseudo-second-order kinetic model and the Freundlich adsorption isotherm model, with the conclusion that the adsorption of silver ions occurred primarily through the chemical bond effect and the heterogeneous surface of the sorbent. Finally, the application of M-rGO with the approach developed herein to actual environmental water samples was successful.
Collapse
Affiliation(s)
- Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ru Ding
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
12
|
Separation and determination of silver nanoparticle in environmental water and the UV-induced photochemical transformations study of AgNPs by cloud point extraction combined ICP-MS. Talanta 2016; 161:342-349. [DOI: 10.1016/j.talanta.2016.08.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022]
|
13
|
Yang Y, Long CL, Li HP, Wang Q, Yang ZG. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:996-1007. [PMID: 26895948 DOI: 10.1016/j.scitotenv.2015.12.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
The production and use of engineering nanomaterials (ENMs) leads to the release of manufactured or engineered nanoparticles into environment. The quantification and characterization of ENMs are crucial for the assessment of their environmental fate, transport behavior and health risks to humans. To analyze the size distribution and particle number concentration of AgNPs and AuNPs in environmental water and track their stability at low number concentration, a systematic study on SP-ICPMS was presented. The Poisson statistics was used to discuss the effect of dwell time and particle number concentration theoretically on the detection of NPs in solution by SP-ICPMS. The dynamic range of SP-ICPMS is approximately two orders of magnitude. The size detection limits for silver and gold nanoparticle in ultrapure water are 20 and 19nm respectively. The detection limit of nanoparticle number concentration is 8×10(4)particlesL(-1). Size distribution of commercial silver and gold nanoparticle dispersions is determined by SP-ICP-MS, which was in accordance with the TEM results. High particle concentration recoveries of spiked AgNPs and AuNPs are obtained (80-108% and 85-107% for AgNPs and AuNPs respectively in ultrapure and filtered natural water). It indicates that SP-ICPMS can be used to detect AgNPs and AuNPs. The filtration study with different membranes showed that filtration might be a problematic pre-treatment method for the detection of AgNPs and AuNPs in environmental water. Furthermore, the stability of citrate-coated AgNPs and tannic acid-coated AuNPs spiked into filtrated natural and waste water matrix was also studied at low concentration using SP-ICP-MS measurements. Dissolution of AgNPs was observed while AuNPs was stable during a ten day incubation period. Finally SP-ICPMS was used to analyze NPs in natural water and waste water. The results indicate that SP-ICPMS can be used to size metallic nanoparticles sensitively of low concentration under realistic environmental conditions.
Collapse
Affiliation(s)
- Yuan Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Chen-Lu Long
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China.
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 392 Lushan Nan Road, Yuelu District, Changsha 410083, PR China; Shenzhen Research Institute of Central South University, B406 Virtual University, Shenzhen High-Tech Industrial Pk, Shenzhen, Guangdong 518057, PR China.
| |
Collapse
|
14
|
YANG C, ZHOU XL, LIU YR, ZHANG Y, WANG J, TIAN LL, YAN YN. Extensive Imprinting Adaptability of Polyacrylamide-based Amphoteric Cryogels Against Protein Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60954-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Detection of Trace Elements in Active Luminescent Glass Using Laser-induced Breakdown Spectroscopy Combined with Laser-induced Fluorescence. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60944-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ramos K, Gómez-Gómez M, Cámara C, Ramos L. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta 2016; 151:83-90. [DOI: 10.1016/j.talanta.2015.12.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 01/03/2023]
|
17
|
Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients. Anal Bioanal Chem 2015; 408:5109-24. [DOI: 10.1007/s00216-015-9014-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
|