1
|
Ran C, Zhang JL, He X, Luo C, Zhang Q, Shen Y, Yin L. Recent development of gold nanochips in biosensing and biodiagnosis sensibilization strategies in vitro based on SPR, SERS and FRET optical properties. Talanta 2024; 282:126936. [PMID: 39362039 DOI: 10.1016/j.talanta.2024.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Gold nanomaterials have become attractive nanomaterials for biomedical research due to their unique physical and chemical properties, and nanochips are designed to manufacture high-quality substrates for loading gold nanoparticles (GNPs) to achieve specific and selective detection. By utilizing multiple optical properties of different gold nanostructures, the sensitivity, specificity, speed, contrast, resolution, and other performance of biosensing and biological diagnosis can be significantly improved. This paper summarized the sensitivity enhancement strategies of optical biosensing techniques based on the three main optical properties of gold nanomaterials: surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET). The aim is to comprehensively review the development direction of in vitro diagnostics (IVDs) from two aspects: detection strategies and modification of gold nanomaterials. In addition, some opportunities and challenges that gold-based IVDs may encounter at present or in the future are also mentioned in this paper. In summary, this paper can enlighten readers with feasible strategies for manufacturing potential gold-based nanobiosensors.
Collapse
Affiliation(s)
- Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Jin-Lin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China; Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Changyou Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Qingjie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
2
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F. Toxicity prediction of nanoparticles using machine learning approaches. Toxicology 2024; 501:153697. [PMID: 38056590 DOI: 10.1016/j.tox.2023.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Nanoparticle toxicity analysis is critical for evaluating the safety of nanomaterials due to their potential harm to the biological system. However, traditional experimental methods for evaluating nanoparticle toxicity are expensive and time-consuming. As an alternative approach, machine learning offers a solution for predicting cellular responses to nanoparticles. This study focuses on developing ML models for nanoparticle toxicity prediction. The training dataset used for building these models includes the physicochemical properties of nanoparticles, exposure conditions, and cellular responses of different cell lines. The impact of each parameter on cell death was assessed using the Gini index. Five classifiers, namely Decision Tree, Random Forest, Support Vector Machine, Naïve Bayes, and Artificial Neural Network, were employed to predict toxicity. The models' performance was compared based on accuracy, sensitivity, specificity, area under the curve, F measure, K-fold validation, and classification error. The Gini index indicated that cell line, exposure dose, and tissue are the most influential factors in cell death. Among the models tested, Random Forest exhibited the highest performance in the given dataset. Other models demonstrated lower performance compared to Random Forest. Researchers can utilize the Random Forest model to predict nanoparticle toxicity, resulting in cost and time savings for toxicity analysis.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran; Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
5
|
Kong Y, Li Z, Zhang L, Song J, Liu Q, Zhu Y, Li N, Song L, Li X. A novel Nb 2C MXene based aptasensor for rapid and sensitive multi-mode detection of AFB 1. Biosens Bioelectron 2023; 242:115725. [PMID: 37837938 DOI: 10.1016/j.bios.2023.115725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Rapid and accurate on-site detection of aflatoxin B1 (AFB1) is of great significance for ensuring food safety. This work developed a dual mode aptasensor and a dual channel artificial neural network (ANN) intelligent sensor detection platform for simple and convenient quantitative detection of AFB1 in food. This sensor was prepared by encoding manganese ion (Mn2+) mediated surface concave niobium carbide MXene nanomaterials (Nb2C-MNs) using fluorescent group labeled aptamers (ssDNA-FAM). Mn2+-mediated Nb2C-MNs exhibited better peroxidase-like and fluorescence quenching properties. Moreover, ssDNA-FAM as a fluorescent probe for the sensor also significantly enhanced the enzyme activity of Nb2C-MNs. When AFB1 existed, ssDNA-FAM preferentially bonded to AFB1, resulting in fluorescence signal recovery and colorimetric signal weakening. Consequently, the multimodal biosensor could achieve fluorescence/colorimetric detection without the need for material and reagent replacement. In on-site detection, both ratio fluorescence and colorimetric signals could be collected using smartphones and analyzed and modeled on the developed ANN platform, achieving visual intelligent sensing. This multimodal biosensor had a detection line as low as 0.0950 ng/mL under optimal conditions, and also had the advantages of simple operation, fast and sensitive, and high specificity, which can meet the real-time on-site detection needs of AFB1 in remote areas.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Lili Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Na Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
6
|
Wang Y, Wang X, Yan Y, Wang J, Lu Y, Abd El-Aty AM, Wang X. A visual colorimetric assay based on phage T156 and gold nanoparticles for the sensitive detection of Salmonella in lettuce. Anal Chim Acta 2023; 1272:341501. [PMID: 37355333 DOI: 10.1016/j.aca.2023.341501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
In this study, a new technique was developed for visual and precise identification of Salmonella using phage T156-mediated aggregation of gold nanoparticles. The phage binds to gold nanoparticles in a dispersed and stable state under high NaCl concentrations. When Salmonella is introduced, the phage specifically recognizes and adsorbs the targeted bacteria, causing the AuNPs to undergo a discoloration reaction resulting in aggregation, which enables Salmonella visualization. The method has a detection range of 3.8 × 101-3.8 × 109 CFU/mL and a limit of detection of 38 CFU/mL and can produce results in approximately 80 min. The technique was also tested on field samples, including spiked lettuce, and was found to be accurate with a recovery rate of 81.0-119.2% and relative standard deviations ranging from 3.3% to 14.7%. Notably, this technique utilizes phages as recognition elements in colorimetric methods, offering simplicity, speed, and the ability to effectively distinguish between live and dead Salmonella. It demonstrates remarkable sensitivity, specificity, and accuracy. Furthermore, it presents a novel avenue for the rapid detection of other pathogenic bacteria.
Collapse
Affiliation(s)
- Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoran Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Kong Y, Zhu Y, Song J, Liu Q, Song L, Fei X, Li X. A novel multimode biosensor for sensitive detection of AFB 1 in food based on Mxenes nano enzymes. Food Chem 2023; 426:136645. [PMID: 37379695 DOI: 10.1016/j.foodchem.2023.136645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this work, Ti3C2 nano-enzymes (Ti3C2 NEs) materials with simulated peroxidase activity and fluorescence quenching properties were prepared. Then Ti3C2 NEs was functionalized using 6-carboxyfluorescein (FAM) labeled Aflatoxin B1 (AFB1) aptamers to construct a novel multimode nano enzyme biosensor for the detection of AFB1 in peanuts. Based on the fluorescence quenching characteristics and the superior simulated peroxidase activity of Ti3C2 NES and the specific binding of the aptamer to AFB1, the sensitive and rapid fluorescence/colorimetric/smart phone detection of AFB1 have been achieved, with detection limits of 0.09 ng mL-1, 0.61 ng mL-1 and 0.96 ng mL-1, respectively. The analytical method provided can not only detect AFB1 in multiple modes, but also has a wider detection range, lower limit of detection (LOD) and better recovery rate, and can achieve on-site accurate detection of AFB1 content in peanuts, which has great application potential in the field of food quality testing.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong 276629, PR China
| | - Xiaowei Fei
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
8
|
Banaye Yazdipour A, Masoorian H, Ahmadi M, Mohammadzadeh N, Ayyoubzadeh SM. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review. Nanotoxicology 2023; 17:62-77. [PMID: 36883698 DOI: 10.1080/17435390.2023.2186279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity.
Collapse
Affiliation(s)
- Alireza Banaye Yazdipour
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hoorie Masoorian
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Mohammadzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tavakoli H, Mohammadi S, Li X, Fu G, Li X. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. Trends Analyt Chem 2022; 157:116806. [PMID: 37929277 PMCID: PMC10621318 DOI: 10.1016/j.trac.2022.116806] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microfluidic technology provides a portable, cost-effective, and versatile tool for point-of-care (POC) bioanalysis because of its associated advantages such as fast analysis, low volumes of reagent consumption, and high portability. Along with microfluidics, the application of nanomaterials in biosensing has attracted lots of attention due to their unique physical and chemical properties for enhanced signal modulation such as signal amplification and signal transduction for POC bioanalysis. Hence, an enormous number of microfluidic devices integrated with nano-sensors have been developed for POC bioanalysis targeting low-resource settings. Herein, we review recent advances in POC bioanalysis on nano-sensor-based microfluidic platforms. We first briefly summarized the different types of cost-effective microfluidic platforms, followed by a concise introduction to nanomaterial-based biosensors. Then, we highlighted the application of microfluidic platforms integrated with nano-sensors for POC bioanalysis. Finally, we discussed the current limitations and perspective trends of the nano-sensor-based microfluidic platforms for POC bioanalysis.
Collapse
Affiliation(s)
- Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Samayeh Mohammadi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030606, China
| | - Guanglei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA
| |
Collapse
|
10
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
11
|
Cao Y, Chen Z, Li X, Li Z, Lin G, Liu T, Wu Y. Dual-color quantum dot-loaded nanoparticles based lateral flow biosensor for the simultaneous detection of gastric cancer markers in a single test line. Anal Chim Acta 2022; 1218:339998. [DOI: 10.1016/j.aca.2022.339998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
|
12
|
Sahu S, Roy R, Anand R. Harnessing the Potential of Biological Recognition Elements for Water Pollution Monitoring. ACS Sens 2022; 7:704-715. [PMID: 35275620 DOI: 10.1021/acssensors.1c02579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental monitoring of pollutants is an imperative first step to remove the genotoxic, embryotoxic, and carcinogenic toxins. Various biological sensing elements such as proteins, aptamers, whole cells, etc., have been used to track down major pollutants, including heavy metals, aromatic pollutants, pathogenic microorganisms, and pesticides in both environmental samples and drinking water, demonstrating their potential in a true sense. The intermixed use of nanomaterials, electronics, and microfluidic systems has further improved the design and enabled robust on-site detection with enhanced sensitivity. Through this perspective, we shed light on the advances in the field and entail recent efforts to optimize these systems for real-time, online sensing and on-site field monitoring.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Gold-Oligonucleotide Nanoconstructs Engineered to Detect Conserved Enteroviral Nucleic Acid Sequences. BIOSENSORS-BASEL 2021; 11:bios11070238. [PMID: 34356709 PMCID: PMC8301919 DOI: 10.3390/bios11070238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Enteroviruses are ubiquitous mammalian pathogens that can produce mild to life-threatening disease. We developed a multimodal, rapid, accurate and economical point-of-care biosensor that can detect nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and oligonucleotides to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral nucleic acid sequence (23 bases), which was identified through in silico screening. Oligonucleotides were designed to demonstrate specific complementarity towards the target enteroviral nucleic acid to produce aggregated gold–oligonucleotide nanoconstructs. The conserved target enteroviral nucleic acid sequence (≥1 × 10−7 M, ≥1.4 × 10−14 g/mL) initiates gold–oligonucleotide nanoconstruct disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow assays that utilise gold–oligonucleotide nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (<60 s), and could be interpreted with a bespoke software and hardware electronic interface. We anticipate that our methodology will translate in silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave the way forward in the clinical evaluation of disease and complement existing strategies to overcome antimicrobial resistance.
Collapse
|
14
|
SHOU W, YANG ST, WANG YL, GUO LH. Preparation of Noble Metal Nanoparticles and Hydrogel Composite Materials and Their Application in Analytical Chemistry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Suo T, Sohail M, Xie S, Li B, Chen Y, Zhang L, Zhang X. DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123418. [PMID: 33265072 DOI: 10.1016/j.jhazmat.2020.123418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The Microcystin-Leucine-Arginine (MC-LR) is the most toxic and widely distributed microcystin, which originates from cyanobacteria produced by water eutrophication. The MC-LR has deleterious effects on the aquatic lives and agriculture, and this highly toxic chemical could severely endanger human health when the polluted food was intaken. Therefore, the monitoring of MC-LR is of vital importance in the fields including environment, food, and public health. Utilizing the complementary base pairing between DNA molecules, DNA nanotechnology can realize the programmable and predictable regulation of DNA molecules. In analytical applications, DNA nanotechnology can be used to detect targets via target-induced conformation change and the nano-assemblies of nucleic acids. Compared with the conventional analytical technologies, DNA nanotechnology has the advantages of sensitive, versatile, and high potential in real-time and on-site applications. According to the molecular basis for recognizing MC-LR, the strategies of applying DNA nanotechnology in the MC-LR monitoring are divided into two categories in this review: DNA as a recognition element and DNA-assisted signal processing. This paper introduces state-of-the-art analytical methods for the detection of MC-LR based on DNA nanotechnology and provides critical perspectives on the challenges and development in this field.
Collapse
Affiliation(s)
- Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing 211166, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Babazadeh S, Moghaddam PA, Keshipour S, Mollazade K. Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Sci Rep 2020; 10:14327. [PMID: 32868864 PMCID: PMC7459307 DOI: 10.1038/s41598-020-71349-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
The current research presents a very simple method for the colorimetric detection of imidacloprid using a graphene quantum dot/Au (III) chemosensor. The results demonstrated that there is an interaction between Au3+ ions and the imidazole group of the pesticide toward reduction of Au3+ to Au0 in the presence of graphene quantum dots. This phenomenon changes the color of gold nanoparticles from yellow to grey or red, and causes a shift in the peak of localized surface plasmon resonance (LSPR) as gold nanoparticles are formed or aggregated based on the concentration of imidacloprid. Imidacloprid was determined by the developed sensor in a linear area of 0.01–1 ppm with a detection limit of 0.007 ppm. Therefore, a simple, quick, and sustainable sensor has been developed for the determination of the investigated analyte. Moreover, the sensor was applied to determine imidacloprid in the real cucumber samples fairly successful.
Collapse
Affiliation(s)
- Saeedeh Babazadeh
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Urmia University, 11 km Sero Road, Urmia, Iran
| | - Parviz Ahmadi Moghaddam
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Urmia University, 11 km Sero Road, Urmia, Iran.
| | - Sajjad Keshipour
- Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Shahid Beheshti St., Urmia, Iran.
| | - Kaveh Mollazade
- Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
17
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
18
|
A Methodology for Porcine Circovirus 2 (PCV-2) Quantification Based on Gold Nanoparticles. MATERIALS 2020; 13:ma13051087. [PMID: 32121429 PMCID: PMC7084481 DOI: 10.3390/ma13051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022]
Abstract
The aim of the current study is to introduce a methodology aimed at producing a biosensor that uses gold nanoparticles (AuNPs) to detect porcine circovirus 2 (PCV-2). This biosensor was based on AuNPs, which were modified with self-assembled monolayers (SAMs) and antibodies. The AuNPs’ surface and virus modification process applied to enable antibody binding was accompanied by localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). Virus quantification was possible by the light absorption difference in the spectrum at concentrations of 105, 106, 107, 108, and 109 DNA copies/mL PCV-2 in relation to quantitative PCR (qPCR), with an R2 value >0.98. The visualization of colorimetric changes in the different PCV-2 concentrations was possible without the use of equipment. The biosensor production methodology presented reproducibility and specificity, as well as easy synthesis and low cost. An enhanced version of it may be used in the future to replace traditional tests such as PCR.
Collapse
|
19
|
Capillary electrophoresis with dual detection UV/C 4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta 2019; 1085:117-125. [PMID: 31522725 DOI: 10.1016/j.aca.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022]
Abstract
Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few μL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.
Collapse
|
20
|
CoO-supported ordered mesoporous carbon nanocomposite based nanozyme with peroxidase-like activity for colorimetric detection of glucose. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z. A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Mikrochim Acta 2019; 186:289. [PMID: 30997559 DOI: 10.1007/s00604-019-3426-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
This review (with 177 refs) gives an overview on nanomaterial-based methods for the determination of uranyl ion (UO22+) by different types of transducers. Following an introduction into the field, a first large section covers the fundamentals of selective recognition of uranyl ion by receptors such as antibodies, aptamers, DNAzymes, peptides, microorganisms, organic ionophores (such as salophens, catechols, phenanthrolines, annulenes, benzo-substituted macrocyclic diamides, organophosphorus receptors, calixarenes, crown ethers, cryptands and β-diketones), by ion imprinted polymers, and by functionalized nanomaterials. A second large section covers the various kinds of nanomaterials (NMs) used, specifically on NMs for electrochemical signal amplification, on NMs acting as signal tags or carriers for signal tags, on fluorescent NMs, on NMs for colorimetric assays, on light scattering NMs, on NMs for surface enhanced Raman scattering (SERS)-based assays and wireless magnetoelastic detection systems. We then discuss detection strategies, with subsections on electrochemical methods (including ion-selective and potentiometric systems, voltammetric systems and impedimetric systems). Further sections treat colorimetric, fluorometric, resonance light scattering-based, SERS-based and photoacoustic methods, and wireless magnetoelastic detection. The current state of the art is summarized, and current challenges are discussed at the end. Graphical abstract An overview is given on nanomaterial-based methods for the detection of uranyl ion by different types of transducers (such as electrochemical, optical, photoacoustic, magnetoelastic, etc) along with a critical discussion of their limitations, benefits and application to real samples.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran.
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Leila Samandari
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran
| | - Zahra Hatami
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran
| |
Collapse
|
22
|
Li C, Wang L, Luo Y, Liang A, Wen G, Jiang Z. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst. NANOMATERIALS 2018; 8:nano8050277. [PMID: 29701650 PMCID: PMC5977291 DOI: 10.3390/nano8050277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Fullerene exhibited strong catalysis of the redox reaction between HAuCl₄ and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS) effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO₄2− combined with Ba2+ to form stable BaSO₄ precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03⁻3.4 μM.
Collapse
Affiliation(s)
- Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Libing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Yanghe Luo
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
23
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|