1
|
Chen Q, Lin R, Wang W, Zuo Y, Zhuo Y, Yu Y, Chen S, Gu H. Efficient Electrochemical Microsensor for the Simultaneous Measurement of Hydrogen Peroxide and Ascorbic Acid in Living Brains. Anal Chem 2024; 96:6683-6691. [PMID: 38619493 DOI: 10.1021/acs.analchem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 μM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.
Collapse
Affiliation(s)
- Qiuyue Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Wenhui Wang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha 410006, Hunan, P. R. China
| | - Yanyan Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| |
Collapse
|
2
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
3
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Wu R, Yu S, Chen S, Dang Y, Wen SH, Tang J, Zhou Y, Zhu JJ. A carbon dots-enhanced laccase-based electrochemical sensor for highly sensitive detection of dopamine in human serum. Anal Chim Acta 2022; 1229:340365. [PMID: 36156223 DOI: 10.1016/j.aca.2022.340365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Enzyme-based electrochemical sensor possesses a significant advantage in the highly efficient detection of small molecules, however, the poor electron transport efficiency limits their wide application. In this study, taking advantage of the distinct biocatalytic activity of laccase and the excellent electroconductibility of carbon dots, a carbon dots-enhanced laccase-based electrochemical sensor for the detection of dopamine (DA) is established. Thereinto, laccase can specifically recognize DA and promote its electrocatalytic oxidation on the electrode, while, the carbon dots can be used as the immobilization substrate of laccase and enhance its electron transfer efficiency, thus achieving the highly sensitive detection of dopamine. The electrochemical performance of the modified electrode interface is studied by electrochemical impedance spectroscopy and differential pulse voltammetry. As demonstrated, the electrocatalytic activity of the proposed electrochemical sensor for DA is significantly improved and exhibits a low detection limit (0.08 μM) and a wide linear range (0.25 μM-76.81 μM). The excellent selectivity allows the sensor has the capacity for specific discrimination the DA from other interferents. Furthermore, by analyzing the DA in human serum verifies the practicability of this assay in real sample analysis.
Collapse
Affiliation(s)
- Ru Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Siyu Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jieli Tang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Luo Y, Lin R, Zuo Y, Zhang Z, Zhuo Y, Lu M, Chen S, Gu H. Efficient Electrochemical Microsensor for In Vivo Monitoring of H 2O 2 in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Anal Chem 2022; 94:9130-9139. [PMID: 35694821 DOI: 10.1021/acs.analchem.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (H2O2), one of the most stable and abundant reactive oxygen species (ROS), acting as a modulator of dopaminergic signaling, has been intimately implicated in Parkinson's disease, creating a critical need for the selective quantification of H2O2 in the living brain. Current natural or nanomimic enzyme-based electrochemical methods employed for the determination of H2O2 suffer from inadequate selectivity and stability, due to which the in vivo measurement of H2O2 in the living brain remains a challenge. Herein, a series of 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (DBP) derivatives were designed by tuning the substitute groups and sites of a boric acid ester, which served as probes to specifically react with H2O2. Consequently, the reaction products, 5-(1,2-dithiolan-3-yl)-N-(4-hydroxyphen-yl)pentanamide (DHP) derivatives, converted the electrochemical signal from inactive into active. After systematically evaluating their performances, 5-(1,2-dithiolan-3-yl)-N-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentanamide (o-Cl-DBP) was finally identified as the optimized probe for H2O2 detection as it revealed the fastest reaction time, the largest current density, and the most negative potential. In addition, electrochemically oxidized graphene oxide (EOGO) was utilized to produce a stable inner reference. The designed electrochemical microsensor provided a ratiometric strategy for real-time tracking of H2O2 in a linear range of 0.5-600 μM with high selectivity and accuracy. Eventually, the efficient electrochemical microsensor was successfully applied to the measurement of H2O2 in Parkinson's disease (PD) mouse brain. The average levels of H2O2 in the cortex, striatum, and hippocampus in the normal mouse and PD mouse were systematically compared for the first time.
Collapse
Affiliation(s)
- Yu Luo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Ziyi Zhang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
6
|
Deng Z, Zhao L, Zhou H, Xu X, Zheng W. Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Li J, Ban L, Tang L. Research Progress in Mitochondrial Targeting Fluorescent Probes for Hydrogen Peroxide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202006023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
ZHAO JH, LIU GY, WANG S, LU SS, SUN J, YANG XR. In Situ Specific Chromogenic and Fluorogenic Reaction for Straight forward and Dual-Modal Dopamine Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|