1
|
Xiao F, Wang Y, Li Q, Yang D, Yang Y. Fluorescence detection of dopamine based on the peroxidase-like activity of Fe 3O 4-MWCNTs@Hemin. Mikrochim Acta 2023; 190:259. [PMID: 37306766 DOI: 10.1007/s00604-023-05796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
A novel Fe3O4-MWCNTs@Hemin nanocomposite was synthesized using hemin and Fe3O4 with multi-walled carbon nanotubes (MWCNTs) by one-step hydrothermal methods. The as-prepared Fe3O4-MWCNTs@Hemin nanocomposites exhibited excellent peroxidase-like activities in the activation of H2O2. The mechanisms, kinetics, and catalytic performances of Fe3O4-MWCNTs@Hemin were systematically studied. Fe3O4-MWCNTs@Hemin can oxidize dopamine (DA) to dopaquinone in the presence of H2O2, and the intermediate products dopaquinone can further react with β-naphthol to generate a highly fluorescent derivative at 415 nm excitation wavelength. Therefore, an innovative fluorescence platform for the detection of DA was developed. The fluorescence intensity increased linearly with DA concentration in the range 0.33 to 107 μM, with a low detection limit of 0.14 μM. Due to the excellent activity, substrate universality, fast response, high selectivity, and sensitivity of Fe3O4-MWCNTs@Hemin, the proposed fluorescence method was used to analyze complex biological blood samples with a satisfactory result. It demonstrated the significant potential for developing effective and dependable fluorescent analytical platforms for preserving human health.
Collapse
Affiliation(s)
- Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
2
|
Lu C, Zandieh M, Zheng J, Liu J. Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. NANOSCALE 2023; 15:8189-8196. [PMID: 37093157 DOI: 10.1039/d3nr01098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peroxidase-based assays are the most extensively used in bioanalytical sensors because of their simple colorimetric readout and high sensitivity owing to enzymatic signal amplification. To improve the stability, modification, and cost of protein-based enzymes, such as horseradish peroxidase (HRP), various enzyme mimics, such as DNAzymes and nanozymes, have emerged over the last few decades. In this study, we compared the peroxidase activities of HRP, a G-quadruplex (G4)-hemin DNAzyme, and Fe3O4 nanozymes in terms of activity and stability under different conditions. The reactions were much slower at pH 7 than at pH 4. At pH 4, the turnover rate of HRP (375 s-1) was faster than that of G4 DNAzyme (0.14 s-1) and Fe3O4 (6.1 × 10-4 s-1, calculated by surface Fe concentration). When normalized to mass concentrations, the trend was the same. Through observation of the reaction for a long time of 2 h, the changes in the color and UV-vis spectra were also different for these catalysts, indicating different reaction mechanisms among these catalysts. Moreover, different buffers and nanozyme sizes were found to influence the activity of the catalysts. Fe3O4 showed the highest stability compared to HRP and G4 DNAzyme after a catalytic reaction or incubation with H2O2 for a few hours. This study helps to understand the properties of catalysts and the development of novel catalysts with enzyme-mimicking activities for application in various fields.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
3
|
Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni 0.1Cu 0.9S Nanoflower. BIOSENSORS 2022; 12:874. [PMID: 36291011 PMCID: PMC9599305 DOI: 10.3390/bios12100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yayu Lai
- The Department of General Practice, The 958th Hospital of Chinese People’s Liberation Army, Chongqing 400000, China
| | - Jinming Cao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Peng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tian Tian
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta 2022; 1230:340368. [DOI: 10.1016/j.aca.2022.340368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
5
|
Zhao C, Shi GM, Shi FN, Wang XL, Li ST. The synthesis and excellent peroxidase-like activity for the colorimetric detection of H2O2 of core-shell Fe/FeS2@C nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Tan J, Geng W, Li J, Wang Z, Zhu S, Wang X. Colorimetric and Fluorescence Dual-Mode Biosensors Based on Peroxidase-Like Activity of the Co3O4 Nanosheets. Front Chem 2022; 10:871013. [PMID: 35480390 PMCID: PMC9037028 DOI: 10.3389/fchem.2022.871013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
The mimic enzyme has become a research hotspot in recent years because of its advantages of high stability, convenient preparation, and low price. In this article, Co3O4 nanosheets synthesized by a simple hydrothermal method possess the characteristics of a peroxidase-like activity. The results demonstrated that 3,3′,5,5′-Tetramethylbenzidine (TMB) could be oxidized by H2O2 to produce a typical blue product (oxTMB) which has a strong absorption at 650 nm wavelength with the help of the Co3O4 nanosheets. Thus, a simple and sensitive colorimetric detection method for H2O2 was established with a good linear relationship (2–200 μM) and a low limit of detection (0.4 μM). Meanwhile, the colorimetric product can effectively quench the fluorescence emitted by Ru(bpy)32+. Therefore, a colorimetric and fluorescence dual detection mode photochemical sensor for H2O2 detection is constructed based on the principle of the inner filter effect (IFE) between the colorimetric product (oxTMB) and Ru(bpy)32+. It can effectively avoid the false positive problem of a single detection mode. In the presence of glucose oxidase, glucose can be catalyzed to produce gluconic acid and H2O2; therefore, the sensor can also be used for the determination of glucose with a good linear relationship (0.02–2 μM) and a low limit of detection (5 nM). Experimental results showed that the sensor has a high sensitivity and strong anti-interference ability which can be used for the detection of actual samples.
Collapse
Affiliation(s)
- Jingying Tan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Weifu Geng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Junde Li
- Hospital of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, China
| | - Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shaohao Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xiuzhong Wang,
| |
Collapse
|
7
|
Application of Novel Modified Chitosan Hydrogel Composite for the Efficient Removal of Eriochrome Black T and Methylene Blue Dyes from Aqueous Media. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02168-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|