1
|
Xu J, Gong X, Meng Z, Chen P, Nan H, Li Y, Deng T, Wang D, Zeng Y, Hu X, Tian H, Niu Z, Zheng W. Bi-Interlayer Strategy for Modulating NiCoP-Based Heterostructure toward High-Performance Aqueous Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401452. [PMID: 38723848 DOI: 10.1002/adma.202401452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nickel-cobalt (NiCo) phosphides (NCPs) possess high electrochemical activity, which makes them promising candidates for electrode materials in aqueous energy storage devices, such as supercapacitors and zinc (Zn) batteries. However, the actual specific capacitance and rate capability of NCPs require further improvement, which can be achieved through reasonable heterostructural design and loading conditions of active materials on substrates. Herein, novel hierarchical Bi-NCP heterogeneous structures with built-in electric fields consisting of bismuth (Bi) interlayers (electrodeposited on carbon cloth (CC)) are designed and fabricated to ensure the formation of uniform high-load layered active materials for efficient charge and ion transport. The resulting CC/Bi-NCP electrodes show a uniform, continuous, and high mass loading (>3.5 mg) with a superior capacitance reaching 1200 F g-1 at 1 A g-1 and 4129 mF cm-2 at 1 mA cm-2 combined with high-rate capability and durable cyclic stability. Moreover, assembled hybrid supercapacitors (HSCs), supercapatteries, and alkaline Zn-ion (AZBs) batteries constructed using these electrodes deliver high energy densities of 64.4, 81.8, and 319.1 Wh kg-1, respectively. Overall, the constructed NCPs with excellent aqueous energy storage performance have the potential for the development of novel transition metal-based heterostructure electrodes for advanced energy devices.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Xiliang Gong
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Peiyuan Chen
- College of Physics, Jilin University, Changchun, 130012, China
| | - Haoshan Nan
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Yaxin Li
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Ting Deng
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Dong Wang
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Yi Zeng
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun, 130022, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
P J, SP K, Kungumadevi L, Rathinam Y, Ganesan R, Kandasami A, Senthil TS. γ-Ray-Induced Photocatalytic Activity of Bi-Doped PbS toward Organic Dye Removal under Sunlight. ACS OMEGA 2023; 8:47427-47439. [PMID: 38144044 PMCID: PMC10734000 DOI: 10.1021/acsomega.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/26/2023]
Abstract
Photocatalysts based on semiconducting chalcogenides due to their adaptable physio-chemical characteristics are attracting attention. In this work, Bi-doped PbS (henceforth PbS:Bi) was prepared using a straightforward chemical precipitation approach, and the influence of γ-irradiation on PbS's photocatalytic ability was investigated. Synthesized samples were confirmed structurally and chemically. Pb(1-x)BixS (x = 0, 0.005, 0.01, 0.02) samples that were exposed to gamma rays showed fine-tuning of the optical bandgap for better photocatalytic action beneath visible light. The photocatalytic degradation rate of the irradiated Pb0.995Bi0.005S sample was found to be 1.16 times above that of pure PbS. This is due to the occupancy of Bi3+ ions at surface lattice sites as a result of their lower concentration in PbS, which effectively increases interface electron transport and the annealing impact of gamma irradiation. Scavenger tests show that holes are active species responsible for deterioration of the methylene blue. The irradiated PbS:Bi demonstrated high stability after being used repeatedly for photocatalytic degradation.
Collapse
Affiliation(s)
- Jeya P
- Department
of Physics, CMS College, MG University, Kottayam, Kerala 686560, India
- Department
of Physics, Mother Teresa Women’s
University, Kodaikanal 624102, India
| | - Keerthana SP
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - L. Kungumadevi
- Department
of Physics, Mother Teresa Women’s
University, Kodaikanal 624102, India
| | - Yuvakkumar Rathinam
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Ravi Ganesan
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Asokan Kandasami
- Materials
Science Division, Inter-University Accelerator
Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - T. S. Senthil
- Department
of Physics, Erode Sengunthar Engineering
College, Erode 638057, India
| |
Collapse
|
3
|
Kumar N, Kumari M, Ismael M, Tahir M, Sharma RK, Kumari K, Koduru JR, Singh P. Graphitic carbon nitride (g-C 3N 4)-assisted materials for the detection and remediation of hazardous gases and VOCs. ENVIRONMENTAL RESEARCH 2023; 231:116149. [PMID: 37209982 DOI: 10.1016/j.envres.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials are attracting attention for their unique properties, such as low-cost, chemical stability, facile synthesis, adjustable electronic structure, and optical properties. These facilitate the use of g-C3N4 to design better photocatalytic and sensing materials. Environmental pollution by hazardous gases and volatile organic compounds (VOCs) can be monitored and controlled using eco-friendly g-C3N4- photocatalysts. Firstly, this review introduces the structure, optical and electronic properties of C3N4 and C3N4 assisted materials, followed by various synthesis strategies. In continuation, binary and ternary nanocomposites of C3N4 with metal oxides, sulfides, noble metals, and graphene are elaborated. g-C3N4/metal oxide composites exhibited better charge separation that leads to enhancement in photocatalytic properties. g-C3N4/noble metal composites possess higher photocatalytic activities due to the surface plasmon effects of metals. Ternary composites by the presence of dual heterojunctions improve properties of g-C3N4 for enhanced photocatalytic application. In the later part, we have summarised the application of g-C3N4 and its assisted materials for sensing toxic gases and VOCs and decontaminating NOx and VOCs by photocatalysis. Composites of g-C3N4 with metal and metal oxide give comparatively better results. This review is expected to bring a new sketch for developing g-C3N4-based photocatalysts and sensors with practical applications.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Monika Kumari
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Mohammed Ismael
- Electrical energy storage system, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | | | - Kavitha Kumari
- Baba Mastnath University, Asthal Bohar, Rohtak, 124001, India
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
4
|
Banoth P, Kandula C, Lavudya PK, Akaram S, De Los Santos Valladares L, Ammanabrolu R, Mamidipudi GK, Kollu P. BiFeO 3-Black TiO 2 Composite as a Visible Light Active Photocatalyst for the Degradation of Methylene Blue. ACS OMEGA 2023; 8:18653-18662. [PMID: 37273593 PMCID: PMC10233835 DOI: 10.1021/acsomega.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
The application of a novel BiFeO3 (BFO)-black TiO2 (BTO) composite (called BFOT) as a photocatalyst for the degradation of methylene blue is reported. The p-n heterojunction photocatalyst was synthesized for the first time through microwave-assisted co-precipitation synthesis to change the molar ratio of BTO in BiFeO3 to increase the photocatalytic efficiency of the BiFeO3 photocatalyst. The UV-visible properties of p-n heterostructures showed excellent absorption of visible light and reduced electron-hole recombination properties compared to the pure-phase BFO. Photocatalytic studies on BFOT10, BFOT20, and BFOT30 have shown that they decompose methylene blue (MB) in sunlight better than pure-phase BFO in 70 min. The BFOT30 photocatalyst was the most effective at reducing MB when exposed to visible light (97%). Magnetic studies have shown that BTO is diamagnetic, and the BFOT10 photocatalyst exhibits a very weak antiferromagnetic behavior, whereas BFOT20 and BFO30 show diamagnetic behavior. This study confirms that the catalyst has poor stability and weak magnetic recovery properties due to the non-magnetic phase BTO in the BFO.
Collapse
Affiliation(s)
- Pravallika Banoth
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Chinna Kandula
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Praveen Kumar Lavudya
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Saidulu Akaram
- CASEST,
School of Physics, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Luis De Los Santos Valladares
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
- Laboratorio
de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima 14-0149, Peru
| | - RajaniKanth Ammanabrolu
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Ghanashyam Krishna Mamidipudi
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
- CASEST,
School of Physics, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Pratap Kollu
- School
of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
- CASEST,
School of Physics, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| |
Collapse
|
5
|
Wang S, Li Q, Ge K, Yang Y, Zhang Y, Pan M, Zhu L. Ferroelectric nano-heterojunctions for piezoelectricity-enhanced photocatalysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Wang D, Zhan E, Wang S, Liu X, Yan G, Chen L, Wang X. Surface Coordination of Pd/ZnIn 2S 4 toward Enhanced Photocatalytic Activity for Pyridine Denitrification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010282. [PMID: 36615476 PMCID: PMC9822349 DOI: 10.3390/molecules28010282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
New surface coordination photocatalytic systems that are inspired by natural photosynthesis have significant potential to boost fuel denitrification. Despite this, the direct synthesis of efficient surface coordination photocatalysts remains a major challenge. Herein, it is verified that a coordination photocatalyst can be constructed by coupling Pd and CTAB-modified ZnIn2S4 semiconductors. The optimized Pd/ZnIn2S4 showed a superior degradation rate of 81% for fuel denitrification within 240 min, which was 2.25 times higher than that of ZnIn2S4. From the in situ FTIR and XPS spectra of 1% Pd/ZnIn2S4 before and after pyridine adsorption, we find that pyridine can be selectively adsorbed and form Zn⋅⋅⋅C-N or In⋅⋅⋅C-N on the surface of Pd/ZnIn2S4. Meanwhile, the superior electrical conductivity of Pd can be combined with ZnIn2S4 to promote photocatalytic denitrification. This work also explains the surface/interface coordination effect of metal/nanosheets at the molecular level, playing an important role in photocatalytic fuel denitrification.
Collapse
Affiliation(s)
- Deling Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Erda Zhan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Shihui Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Xiyao Liu
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| | - Lu Chen
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
- Correspondence: (G.Y.); (L.C.); (X.W.); Tel.: +86-13809566652 (G.Y.); +86-156959097359 (L.C.); +86-13600887951 (X.W.)
| |
Collapse
|
7
|
Li N, Wang C, Zhang K, Lv H, Yuan M, Bahnemann DW. Progress and prospects of photocatalytic conversion of low-concentration NO. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64139-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Boosting photocatalytic H2 evolution by ingenious construction of isotype heptazine/triazine based porous carbon nitride heterojunction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wang K, Tian J, Yu W, Lin L, Qi Z, Wang C. Preparation and characterization of a self-dispersed and reactive TiO 2/BiOBr photocatalyst for self-cleaning and ultraviolet resistant cotton fabrics. NEW J CHEM 2022. [DOI: 10.1039/d2nj03910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient approach is presented herein to develop self-cleaning and ultraviolet resistant cotton fabrics loaded with a self-dispersed and reactive TiO2/BiOBr photocatalyst.
Collapse
Affiliation(s)
- Kuang Wang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, Jiangsu Province, China
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Jialong Tian
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
| | - Wenhui Yu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, Jiangsu Province, China
| | - Ling Lin
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
| | - Zhenming Qi
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
| | - Chunxia Wang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, Jiangsu Province, China
| |
Collapse
|
10
|
Priya AK, Suresh R, Kumar PS, Rajendran S, Vo DVN, Soto-Moscoso M. A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases. CHEMOSPHERE 2021; 284:131344. [PMID: 34225112 DOI: 10.1016/j.chemosphere.2021.131344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the continuous increase in industrial pollution and modern lifestyle, several types of air contaminants and their concentrations are emerging in the atmosphere. Besides, photocatalysis has gained much attention in the elimination of air pollution. Several ultraviolet and visible light active photocatalysts were tested in air pollutant treatment and thereby, the number of reports was increased in the past few years. In this context, this review describes the photocatalytic treatment of gaseous inorganic contaminants like NOx, H2S, and organic pollutants like formaldehyde, acetaldehyde, and benzene derivatives. Different photocatalysts with their air pollutant removal efficiency were explained. Improving strategies such as metal/non-metal doping, composite formation for photocatalyst activities have been studied. Moreover, an analysis is presented from each of the existing photocatalytic immobilization approaches. Also, factors responsible for effective photocatalysis were explained. Overall, the photocatalytic abatement technique is an auspicious way to eliminate different air contaminants. Besides, existing drawbacks and future challenges are also discussed.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| |
Collapse
|
11
|
Li R, Ou X, Zhang L, Qi Z, Wu X, Lu C, Fan J, Lv K. Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: effect of metallic Bi on CdS nanorods. Chem Commun (Camb) 2021; 57:10067-10070. [PMID: 34514489 DOI: 10.1039/d1cc03516a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first visible light photocatalytic oxidation of NO on CdS nanorods (CdS-NRs), one of the typical reduction type semiconductor photocatalysts. The NO removal rate in a continuous reactor sharply increases from 44% to 58% after in situ deposition of Bi nanoplates on CdS-NRs. The LSPR effect of metallic Bi causes the dramatic production of superoxide radicals (˙O2-) and singlet oxygen (1O2) that are responsible for the oxidation of NO.
Collapse
Affiliation(s)
- Ruina Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China.
| | - Xiaoyu Ou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China.
| | - Li Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China.
| | - Zheng Qi
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China.
| | - Xiaofeng Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China. .,Surface Science Laboratory, Department of Materials and Earth Sciences, Technische Universität Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany.
| | - Chunshan Lu
- State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei Province 430074, China.
| |
Collapse
|
12
|
|
13
|
Ovcharov ML, Granchak VM. Photocatalytic Conversion of Nitrogen Oxides: Current State and Perspectives: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis. Catalysts 2021. [DOI: 10.3390/catal11060651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this contribution, the hydrogen evolution reaction and photodegradation of Rhodamine B (RhB) dye were studied using urea-based polymeric carbon nitride (PCN) as photocatalyst. The effects of calcination temperature and heating rate of the PCN on structural, morphological, optical, photoelectrochemical, and photocatalytic properties were addressed. Different properties were found to be crucial in boosting photocatalytic performance dependending on the reaction type. The highest efficiency in hydrogen evolution was observed in the presence of PCN characterized by the superior charge transport and charge lifetime properties arising from higher degree of structural arrangement and lower defect content in comparison to that of other photocatalysts. However, photocatalytic degradation of RhB was the most powerful when the catalyst exhibited the highest specific surface area as a key parameter determining its efficiency, although it presented lower charge transport and charge carrier properties.
Collapse
|
15
|
SPR effect of Au nanoparticles on the visible photocatalytic RhB degradation and NO oxidation over TiO2 hollow nanoboxes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63383-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Li Y, Zhang D, Feng X, Xiang Q. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63427-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Liang R, Liang Z, Chen F, Xie D, Wu Y, Wang X, Yan G, Wu L. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63402-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ma B, Sun S, He H, Lv R, Deng J, Huo T, Zhao Y, Yu H, Zhou L. An Efficient Metal-Free Photocatalytic System with Enhanced Activity for NADH Regeneration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Jianjun Deng
- Clinical Laboratory, Mianyang 404 Hospital, Mianyang 621000, China
| | | | | | | | | |
Collapse
|
20
|
Wang Q, Gao Q, Wu H, Fan Y, Lin D, He Q, Zhang Y, Cong Y. In situ construction of semimetal Bi modified BiOI-Bi2O3 film with highly enhanced photoelectrocatalytic performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Liu D, Chen D, Li N, Xu Q, Li H, He J, Lu J. ZIF-67-Derived 3D Hollow Mesoporous Crystalline Co 3 O 4 Wrapped by 2D g-C 3 N 4 Nanosheets for Photocatalytic Removal of Nitric Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902291. [PMID: 31192542 DOI: 10.1002/smll.201902291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/21/2019] [Indexed: 05/20/2023]
Abstract
ZIF-67-derived 3D hollow mesoporous crystalline Co3 O4 wrapped by 2D graphitic carbon nitride (g-C3 N4 ) nanosheets are prepared by low temperature annealing, and are used for the photocatalytic oxidation of nitric oxide (NO) at a concentration of 600 ppb. The p-n heterojunction between Co3 O4 and g-C3 N4 forms a spatial conductive network frame and results in a broad visible light response range. The hollow mesoporous structure of Co3 O4 contributes to the circulation and adsorption of NO, and the large specific surface area exposes abundant active sites for the reaction of active species. A maximum NO degradation efficiency of 57% is achieved by adjusting the mass of the Co3 O4 precursor. Cycling tests and X-ray diffraction indicate the high stability and recyclability of the composite, making it promising in environmental purification applications.
Collapse
Affiliation(s)
- Dongni Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
Wang Q, Wu H, Gao Q, Lin D, Fan Y, Duan R, Cong Y, Zhang Y. Fabrication of visible-light-active Bi/BiOI-Bi2O3 composite with enhanced photocatalytic activity. J Colloid Interface Sci 2019; 548:255-264. [DOI: 10.1016/j.jcis.2019.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022]
|
23
|
Wu X, Fu M, Lu P, Ren Q, Wang C. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63300-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63320-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
A Bi/BiOI/(BiO)2CO3 heterostructure for enhanced photocatalytic NO removal under visible light. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63187-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Paul DR, Sharma R, Nehra SP, Sharma A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv 2019; 9:15381-15391. [PMID: 35514817 PMCID: PMC9064223 DOI: 10.1039/c9ra02201e] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/11/2019] [Indexed: 11/21/2022] Open
Abstract
The appropriate synthesis temperature and optimized photodegradation reaction conditions result in an appreciable enhancement of the photocatalytic activity of urea derived innate g-C3N4 towards MB dye degradation.
Collapse
Affiliation(s)
- Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies
- Deenbandhu Chhotu Ram University of Science and Technology
- India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies
- Deenbandhu Chhotu Ram University of Science and Technology
- India
| | - S. P. Nehra
- Center of Excellence for Energy and Environmental Studies
- Deenbandhu Chhotu Ram University of Science and Technology
- India
- Center for Polymers and Organic Solids
- Department of Chemistry and Biochemistry
| | - Anshu Sharma
- Department of Physics
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| |
Collapse
|
27
|
Hou D, Tang F, Ma B, Deng M, Qiao XQ, Liu YL, Li DS. Bi4O5I2 flower/Bi2S3 nanorod heterojunctions for significantly enhanced photocatalytic performance. CrystEngComm 2019. [DOI: 10.1039/c9ce00697d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent photocatalytic reduction of Cr(vi) over Bi4O5I2/Bi2S3 heterojunctions is ascribed to the synergetic effects of Bi2S3 sensitization and intimate contact between Bi4O5I2 flowers and Bi2S3 nanorods.
Collapse
Affiliation(s)
- Dongfang Hou
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Fan Tang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Bingbing Ma
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Min Deng
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Xiu-qing Qiao
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Yun-Lin Liu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| |
Collapse
|
28
|
Prakash K, Senthil Kumar P, Pandiaraj S, Karuthapandian S. Versatile, metal free and temperature-controlled g-C3N4 as a highly efficient and robust photocatalyst for the degradation of organic pollutants. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3663-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Facile preparation of sepiolite@LDH composites for the visible-light degradation of organic dyes. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63120-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Yang C, Teng W, Song Y, Cui Y. C-I codoped porous g-C3N4 for superior photocatalytic hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63131-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Wang X, Chen Y, Fu M, Chen Z, Huang Q. Effect of high-voltage discharge non-thermal plasma on g-C3N4 in a plasma-photocatalyst system. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Shi T, Duan Y, Lv K, Hu Z, Li Q, Li M, Li X. Photocatalytic Oxidation of Acetone Over High Thermally Stable TiO 2 Nanosheets With Exposed (001) Facets. Front Chem 2018; 6:175. [PMID: 29868569 PMCID: PMC5968306 DOI: 10.3389/fchem.2018.00175] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/30/2018] [Indexed: 02/02/2023] Open
Abstract
Anatase TiO2 (A-TiO2) usually exhibits superior photocatalytic activity than rutile TiO2 (R-TiO2). However, the phase transformation from A-TiO2 to R-TiO2 will inevitably happens when the calcination temperature is up to 600°C, which hampers the practical applications of TiO2 photocatalysis in hyperthermal situations. In this paper, high energy faceted TiO2 nanosheets (TiO2-NSs) with super thermal stability was prepared by calcination of TiOF2 cubes. With increase in the calcination temperature from 300 to 600°C, TiOF2 transforms into TiO2 hollow nanoboxes (TiO2-HNBs) assembly from TiO2-NSs via Ostwald Rippening process. Almost all of the TiO2-HNBs are disassembled into discrete TiO2-NSs when calcination temperature is higher than 700°C. Phase transformation from A-TiO2 to R-TiO2 begins at 1000°C. Only when the calcination temperature is higher than 1200°C can all the TiO2-NSs transforms into R-TiO2. The 500°C-calcined sample (T500) exhibits the highest photoreactivity toward acetone oxidation possibly because of the production of high energy TiO2-NSs with exposed high energy (001) facets and the surface adsorbed fluorine. Surface oxygen vacancy, due to the heat-induced removal of surface adsorbed fluoride ions, is responsible for the high thermal stability of TiO2-NSs which are prepared by calcination of TiOF2 cubes.
Collapse
Affiliation(s)
- Ting Shi
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Youyu Duan
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Kangle Lv
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Zhao Hu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Qin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Mei Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaofang Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China.,College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
In-situ transformation of Bi2WO6 to highly photoreactive Bi2WO6@Bi2S3 nanoplate via ion exchange. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62913-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Zhao X, Du Y, Zhang C, Tian L, Li X, Deng K, Chen L, Duan Y, Lv K. Enhanced visible photocatalytic activity of TiO2 hollow boxes modified by methionine for RhB degradation and NO oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63039-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Mo Z, Xu H, Chen Z, She X, Song Y, Yan P, Xu Y, Lei Y, Yuan S, Li H. Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62978-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Chen P, Dong F, Ran M, Li J. Synergistic photo-thermal catalytic NO purification of MnO /g-C3N4: Enhanced performance and reaction mechanism. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63029-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P. Sugarcane juice derived carbon dot-graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:353-363. [PMID: 29515949 PMCID: PMC5815291 DOI: 10.3762/bjnano.9.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 05/26/2023]
Abstract
Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) results revealed new signals for carbonyl and carboxyl groups originating from the CDs in CD/g-C3N4 composites while X-ray diffraction (XRD) results showed distortion of the host matrix after incorporating CDs into g-C3N4. Both analyses signified the interaction between g-C3N4 and CDs. The photoluminescence (PL) analysis indicated that the presence of too many CDs will create trap states at the CD/g-C3N4 interface, decelerating the electron (e-) transport. However, the CD/g-C3N4(0.5) composite with the highest coverage of CDs still achieved the best bisphenol A (BPA) degradation rate at 3.87 times higher than that of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) results. Although the CDs did not display upconversion photoluminescence (UCPL) properties, the π-conjugated CDs served as a photosensitizer (like organic dyes) to sensitize g-C3N4 and injected electrons to the conduction band (CB) of g-C3N4, resulting in the extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the superoxide anion radical (O2•-) and holes (h+) after performing multiple scavenging tests.
Collapse
Affiliation(s)
- Lan Ching Sim
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Jing Lin Wong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Chen Hong Hak
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Jun Yan Tai
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| |
Collapse
|
38
|
Wang F, Wong RJ, Ho JH, Jiang Y, Amal R. Sensitization of Pt/TiO 2 Using Plasmonic Au Nanoparticles for Hydrogen Evolution under Visible-Light Irradiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30575-30582. [PMID: 28829570 DOI: 10.1021/acsami.7b06265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Au nanoparticles with different sizes (10, 20, 30, and 50 nm) were synthesized using a seed-assisted approach and anchored onto Pt/TiO2 employing 3-mercaptopropionic acid as the organic linker. The sizes of the Au nanoparticles were controlled within a narrow range so that the size-dependent surface plasmonic resonance effect on sensitizing Pt/TiO2 can be thoroughly studied. We found that 20 nm Au nanoparticles (Au20) gave the best performance in sensitizing Pt/TiO2 to generate H2 under visible-light illumination. Photoelectrochemical measurements indicated that Au20-Pt/TiO2 exhibited the most efficient "hot" electrons separation among the studied catalysts, correlating well with the photocatalytic activity. The superior performance of Au-supported Pt/TiO2 (Au20-Pt/TiO2) compared with Au anchored to TiO2 (Au20/TiO2) revealed the important role of Pt as a cocatalyst for proton reduction. To elucidate how the visible-light excited hot electrons in Au nanoparticles involved in the proton-reduction reaction process, Au20/TiO2 was irradiated by visible light (λ > 420 nm) with the presence of Pt precursor (H2PtCl6) in a methanol aqueous solution under deaerated condition. Energy-dispersive X-ray spectroscopy mapping analysis on the recovered sample showed that Pt ions could be reduced on the surfaces of both Au nanoparticles and TiO2 support. This observation indicated that the generated hot electrons on Au nanoparticles were injected into the TiO2 conduction band, which were then subsequently transferred to Pt nanoparticles where proton reduction proceeded. Besides, the excited hot electrons could also participate in the proton reduction on Au nanoparticles surface.
Collapse
Affiliation(s)
- Fenglong Wang
- School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Roong Jien Wong
- School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Jie Hui Ho
- School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Yijiao Jiang
- Department of Engineering, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Rose Amal
- School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| |
Collapse
|
39
|
Sun S, Liang S. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C 3N 4) polymers. NANOSCALE 2017; 9:10544-10578. [PMID: 28726962 DOI: 10.1039/c7nr03656f] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mesoporous micro-/nanostructures acting as supports for catalysts or used directly in catalysis reactions generally show fascinating performances that could lead to great potential for application. In the past few decades, extensive efforts have been devoted to the exploration and enrichment of graphitic carbon nitride (g-C3N4) based research. Especially, mesoporous g-C3N4 (mpg-C3N4) with controllable porosity and electronic/atomic structure can bring to bear unique physicochemical properties and has been widely applied in the fields of photocatalysis, adsorbents, sensors and chemical templates. However, a comprehensive summary on mpg-C3N4 micro/nanostructures is less reported and there is an urgent need to further promote the development of function-oriented mpg-C3N4-based materials. Herein, we will overview the significant advances in functional mpg-C3N4 polymers, including general synthesis strategies and growth mechanisms, modifications of electronic/atomic structures and interfacial properties (such as exfoliation, doping and hybridizing), as well as their current applications. Finally, several emerging issues and perspectives are also proposed.
Collapse
Affiliation(s)
- Shaodong Sun
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, ShaanXi, People's Republic of China.
| | | |
Collapse
|
40
|
Ni Z, Zhang W, Jiang G, Wang X, Lu Z, Sun Y, Li X, Zhang Y, Dong F. Enhanced plasmonic photocatalysis by SiO 2 @Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62849-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|