1
|
Su K, Gao T, Tung CH, Wu LZ. Photocatalytic Cracking of non-Biodegradable Plastics to Chemicals and Fuels. Angew Chem Int Ed Engl 2024; 63:e202407464. [PMID: 38894633 DOI: 10.1002/anie.202407464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Plastic pollution is worsening the living conditions on Earth, primarily due to the toxicity and stability of non-biodegradable plastics (NBPs). Photocatalytic cracking of NBPs is emerging as a promising way to cleave inert C-C bonds and abstract the carbon atoms from these wastes into valuable chemicals and fuels. However, controlling these processes is a huge challenge, ascribed to the complicated reactions of various NBPs. Herein, we summarize recent advances in the CO2 and carbon-radical-mediated photocatalytic cracking of NBPs, with an emphasis on the pivotal intermediates. The CO2-mediated cracking proceeded with indiscriminate C-H/C-C bond cleavage of NBPs and tandem photoreduction of CO2, while carbon-radical-mediated cracking was realized by the prior activation of C-H bonds for selective C-C bond cleavage of NBPs. Catalytic generation and conversion of different intermediates greatly depend on the kinds of active species and the structure of photocatalysts under irradiation. Meanwhile, the fate of a specific intermediate is compared with small molecule activation to reveal the key problems in the cracking of NBPs. Finally, the challenges and potential directions are discussed to improve the overall efficiency in the photocatalytic cracking of NBPs.
Collapse
Affiliation(s)
- Kaiyi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tengshijie Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Jiang H, Liu M, Lian X, Zhu M, Zhang F. CsPbBr 3 Quantum Dots Promoted Depolymerization of Oxidized Lignin via Photocatalytic Semi-Hydrogenation/Reduction Strategy. Angew Chem Int Ed Engl 2024; 63:e202318850. [PMID: 38169147 DOI: 10.1002/anie.202318850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Due to the demanding depolymerization conditions and limited catalytic efficiency, enhancing lignin valorization remains challenging. Therefore, lowering the bond dissociation energy (BDE) has emerged as a viable strategy for achieving mild yet highly effective cleavage of bonds. In this study, a photocatalytic semi-hydrogenation/reduction strategy utilizing CsPbBr3 quantum dots (CPB-QDs) and Hantzsch ester (HEH2 ) as a synergistic catalytic system was introduced to reduce the BDE of Cβ -O-Ar, achieving effective cleavage of the Cβ -O-Ar bond. This strategy offers a wide substrate scope encompassing various β-O-4 model lignin dimers, preoxidized β-O-4 polymers, and native oxidized lignin, resulting in the production of corresponding ketones and phenols. Notably, this approach attained a turnover frequency (TOF) that is 17 times higher than that of the reported Ir-catalytic system in the photocatalytic depolymerization of the lignin model dimers. It has been observed via meticulous experimentation that HEH2 can be activated by CPB-QDs via single electron transfer (SET), generating HEH2 ⋅+ as a hydrogen donor while also serving as a hole quencher. Moreover, HEH2 ⋅+ readily forms an active transition state with the substrates via hydrogen bonding. Subsequently, the proton-coupled electron transfer (PCET) from HEH2 ⋅+ to the carbonyl group of the substrate generates a Cα ⋅ intermediate.
Collapse
Affiliation(s)
- Huating Jiang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Minxia Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao Lian
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Mingxiang Zhu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Fang Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
3
|
Xu J, Meng J, Hu Y, Liu Y, Lou Y, Bai W, Dou S, Yu H, Wang S. Electrocatalytic Lignin Valorization into Aromatic Products via Oxidative Cleavage of C α-C β Bonds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0288. [PMID: 38111679 PMCID: PMC10726294 DOI: 10.34133/research.0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Lignin is the most promising candidate for producing aromatic compounds from biomass. However, the challenge lies in the cleavage of C-C bonds between lignin monomers under mild conditions, as these bonds have high dissociation energy. Electrochemical oxidation, which allows for mild cleavage of C-C bonds, is considered an attractive solution. To achieve low-energy consumption in the valorization of lignin, the use of highly efficient electrocatalysts is essential. In this study, a meticulously designed catalyst consisting of cobalt-doped nickel (oxy)hydroxide on molybdenum disulfide heterojunction was developed. The presence of molybdenum in a high valence state promoted the adsorption of tert-butyl hydroperoxide, leading to the formation of critical radical intermediates. In addition, the incorporation of cobalt doping regulated the electronic structure of nickel, resulting in a lower energy barrier. As a result, the heterojunction catalyst demonstrated a selectivity of 85.36% for cleaving the Cα-Cβ bond in lignin model compound, achieving a substrate conversion of 93.69% under ambient conditions. In addition, the electrocatalyst depolymerized 49.82 wt% of soluble fractions from organosolv lignin (OL), resulting in a yield of up to 13 wt% of aromatic monomers. Significantly, the effectiveness of the prepared electrocatalyst was also demonstrated using industrial Kraft lignin (KL). Therefore, this research offers a practical approach for implementing electrocatalytic oxidation in lignin refining.
Collapse
Affiliation(s)
- Jianing Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Juan Meng
- School of Resources and Environmental Engineering,
Jiangsu University of Technology, Changzhou 213001, China
| | - Yi Hu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Wenjing Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Du X, Zhang C, Liu S. Radical-Friedel-Crafts benzylation of arenes with benzyl ethers over 2H-MoS 2: ether cleavage into carbon- and oxygen-centered radicals. Dalton Trans 2022; 51:15322-15329. [PMID: 36102605 DOI: 10.1039/d2dt02801h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective activation of C-O ether bonds is an essential tool in organic synthesis and natural polymer depolymerization. However, the direct cleavage of the ether bond is still challenging work, especially breaking this inert and redox-neutral bond to provide one active carbon radical and another oxygen-centered fragment with oxidation capacity that can participate in the controllable radical reaction. We herein report that commercial 2H-MoS2 with negligible acidity can efficiently catalyze the benzylation of arenes with benzyl ethers, and a new Radical-Friedel-Crafts mechanism is proposed, which is quite different from the strong acid-catalyzed Friedel-Crafts mechanism. With dibenzyl ether as the model benzylation reagent, 2H-MoS2 can achieve the homolytic cleavage of the Bn-OR bond to generate the benzyl carbon radical and RO˙ species, identified by EPR measurement and radical trap experiments. The following radical-involved benzylation is confirmed by the Hammett results and a plausible pathway is proposed to clarify the Radical-Friedel-Crafts process. Heterogeneous 2H-MoS2 can be consecutively used four times without regeneration and it offers 94-95% yields of 2-benzyl-1,4-dimethylbenzene from dibenzyl ether and p-xylene in 30 min at 140 °C. Furthermore, this mechanism can provide some inspiration to activate the ether bond and to utilize ether as an oxidant in C-H bond activation.
Collapse
Affiliation(s)
- Xinze Du
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenglin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Xu J, Shi J, Wang J, Zhang L, Wang Y. Photocatalyst g-C3N4 for efficient cleavage of lignin C C bonds in micellar aqueous medium. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Su K, Liu H, Zhang C, Wang F. Photocatalytic conversion of waste plastics to low carbon number organic products. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63885-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6:197-214. [PMID: 37117437 DOI: 10.1038/s41570-022-00359-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Photocatalysis is an emerging approach for sustainable chemical production from renewable biomass under mild conditions. Active radicals are always generated as key intermediates, in which their high reactivity renders them versatile for various upgrading processes. However, controlling their reaction is a challenge, especially in highly functionalized biomass frameworks. In this Review, we summarize recent advanced photocatalytic systems for selective biomass valorization, with an emphasis on their distinct radical-mediated reaction patterns. The strategies for generating a specific radical intermediate and controlling its subsequent conversion towards desired chemicals are also highlighted, aiming to provide guidance for future studies. We believe that taking full advantage of the unique reactivity of radical intermediates would provide great opportunities to develop more efficient photocatalytic systems for biomass valorization.
Collapse
|
8
|
Su K, Liu H, Gao Z, Fornasiero P, Wang F. Nb 2O 5-Based Photocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003156. [PMID: 33898172 PMCID: PMC8061393 DOI: 10.1002/advs.202003156] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Indexed: 05/02/2023]
Abstract
Photocatalysis is one potential solution to the energy and environmental crisis and greatly relies on the development of the catalysts. Niobium pentoxide (Nb2O5), a typically nontoxic metal oxide, is eco-friendly and exhibits strong oxidation ability, and has attracted considerable attention from researchers. Furthermore, unique Lewis acid sites (LASs) and Brønsted acid sites (BASs) are observed on Nb2O5 prepared by different methods. Herein, the recent advances in the synthesis and application of Nb2O5-based photocatalysts, including the pure Nb2O5, doped Nb2O5, metal species supported on Nb2O5, and other composited Nb2O5 catalysts, are summarized. An overview is provided for the role of size and crystalline phase, unsaturated Nb sites and oxygen vacancies, LASs and BASs, dopants and surface metal species, and heterojunction structure on the Nb2O5-based catalysts in photocatalysis. Finally, the challenges are also presented, which are possibly overcome by integrating the synthetic methodology, developing novel photoelectric characterization techniques, and a profound understanding of the local structure of Nb2O5.
Collapse
Affiliation(s)
- Kaiyi Su
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesINSTM ‐ Trieste and ICCOM ‐ CNR TriesteUniversity of TriesteVia L. Giorgieri 1Trieste34127Italy
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC)Dalian National Laboratory for Clean Energy (DNL)Dalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalian116023China
| |
Collapse
|
9
|
Li H, Liu M, Liu H, Luo N, Zhang C, Wang F. Amine-Mediated Bond Cleavage in Oxidized Lignin Models. CHEMSUSCHEM 2020; 13:4660-4665. [PMID: 32539209 DOI: 10.1002/cssc.202001228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Introducing amines/ammonia into lignin cracking will allow novel bond cleavage pathways. Herein, a method of amines/ammonia-mediated bond cleavage in oxidized lignin β-O-4 models was studied using a copper catalyst at room temperature, demonstrating the effect of the amine source on the selectivity of products. For primary and secondary aliphatic amines, lignin ketone models underwent oxidative Cα -Cβ bond cleavage and Cα -N bond formation to generate aromatic amides. For ammonia, the competition between oxygen and ammonia determined the selectivity between Cα -N and Cβ -N bond formation, generating amides and α-keto amides, respectively. For tertiary amines, the lignin models underwent oxidative Cα -Cβ bond cleavage to benzoic acids. Control experiments indicated that amines act as nucleophiles attacking at the Cα or Cβ position of the oxidized β-O-4 linkage to be cleaved. This study represents a novel example that the breakage of oxidized lignin model can be regulated by amines with a copper catalyst.
Collapse
Affiliation(s)
- Hongji Li
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Meijiang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Dalian, 116023, P.R. China
| |
Collapse
|
10
|
Abstract
In recent decades, research on lignin depolymerization and its downstream product transformation has drawn an enormous amount of attention from academia to industry worldwide, aiming at harvesting aromatic compounds from this abundant and renewable biomass resource. Although the lignin conversion can be traced back to the 1930s and various noncatalytic and catalytic methods have been explored to depolymerize lignin via direct lignin conversion research or lignin models conversion studies, the complexity of the lignin structure, various linkages, the high stability of lignin bonds, and the diverse fragments condensation process make lignin depolymerization to monomers a highly challenging task. For the potential practical utilization of lignin, compared with lignin conversion to liquid fuel with extra H2 consumption, maintaining the aromatic structure and preparing high-value aromatic chemicals from renewable lignin is more profitable. Therefore, lignin depolymerization to easy-to-handle aromatic monomers with acceptable conversion and selectivity is of great importance. In this article, we present our recent studies on lignin's catalytic conversion to aromatic chemicals. First, we introduce our research on protolignin depolymerization via a fragmentation-hydrogenolysis process in alcohol solvents. Then, focusing on the catalytic cleavage of lignin C-C and C-O bonds, we shed light on a recapitulative adjacent functional group modification (AFGM) strategy for the conversion of lignin models. AFGM strategy begins with the adjacent functional group modification of the target C-C or C-O bond to directly decrease the bond dissociation enthalpy (BDE) of targeted bonds or generate new substrate sites to introduce the cleavage reagent for further conversion. Subsequently, on the basis of these two concepts from AFGM, we summarize our strategies on lignin depolymerization, which highlight the effects of lignin structure, catalyst character, and reaction conditions on the efficiency of strategies. In short, the key point for lignin depolymerization to aromatics is promoting the lignin conversion and restraining the condensation. Compared with the complex research on direct lignin conversion, this bottom-up research approach, beginning with lignin model research, can make the conversion mechanism study clear and provide potential methods for the protolignin/technical lignin conversion. In addition, one of our perspectives for lignin utilization is that the products from lignin conversion can be used as monomers for artificial polymerization, such as the simple phenol (PhOH) and other potential acid compounds, or that lignin derivative molecules can be used to synthesize high-value synthetic building blocks.
Collapse
Affiliation(s)
- Chaofeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Li H, Bunrit A, Li N, Wang F. Heteroatom-participated lignin cleavage to functionalized aromatics. Chem Soc Rev 2020; 49:3748-3763. [DOI: 10.1039/d0cs00078g] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroatom-containing reagents triggered the catalytic cleavage of lignin linkages and functionalization of products simultaneously.
Collapse
Affiliation(s)
- Hongji Li
- State Key Laboratory of Catalysis (SKLC)
- Dalian National Laboratory for Clean Energy (DNL)
- Dalian Institute of Chemical Physics (DICP)
- Dalian 116023
- China
| | - Anon Bunrit
- State Key Laboratory of Catalysis (SKLC)
- Dalian National Laboratory for Clean Energy (DNL)
- Dalian Institute of Chemical Physics (DICP)
- Dalian 116023
- China
| | - Ning Li
- State Key Laboratory of Catalysis (SKLC)
- Dalian National Laboratory for Clean Energy (DNL)
- Dalian Institute of Chemical Physics (DICP)
- Dalian 116023
- China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC)
- Dalian National Laboratory for Clean Energy (DNL)
- Dalian Institute of Chemical Physics (DICP)
- Dalian 116023
- China
| |
Collapse
|
12
|
Liu H, Li H, Luo N, Wang F. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03768] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
13
|
Liu H, Li H, Lu J, Zeng S, Wang M, Luo N, Xu S, Wang F. Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00022] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Shu Zeng
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Min Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
14
|
Cheng C, Shen D, Gu S, Luo KH. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00845k] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalytic hydrogenolysis of lignin is overviewed, concerning the cleavage of typical inter-unit linkages and the production of aromatic chemicals.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Dekui Shen
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Sai Gu
- Department of Chemical and Process Engineering
- Faculty of Engineering and Physical Sciences
- University of Surrey
- UK
| | - Kai Hong Luo
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|