1
|
Yu Q, Zhang Q, Wu Z, Yang Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS NANO 2025; 19:3037-3053. [PMID: 39808505 DOI: 10.1021/acsnano.4c16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
2
|
Nabipour H, Rohani S. Green Synthesis of pH-Responsive Metal-Organic Frameworks for Delivery of Diclofenac Sodium. IEEE Trans Nanobioscience 2024; 23:63-70. [PMID: 37428669 DOI: 10.1109/tnb.2023.3289787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.
Collapse
|
3
|
Binaeian E, Nabipour H, Ahmadi S, Rohani S. The green synthesis and applications of biological metal-organic frameworks for targeted drug delivery and tumor treatments. J Mater Chem B 2023; 11:11426-11459. [PMID: 38047399 DOI: 10.1039/d3tb01959d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.
Collapse
Affiliation(s)
- Ehsan Binaeian
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Soroush Ahmadi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
4
|
Miao P, Li Y, Du Y. Dual-ligand 3D lammelar chiral metal-organic framework for capillary electrochromatographic enantioseparations. Mikrochim Acta 2023; 190:302. [PMID: 37464133 DOI: 10.1007/s00604-023-05890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Dual-ligand metal-organic frameworks (MOFs) based on tryptophan and camphoric acid were designed and synthesized as the stationary phase of the capillary electrochromatography (CEC) system. This CEC system showed significantly improved enantioseparation ability for nine drugs, compared with the single-ligand MOF stationary phase. Characterization methods such as N2 adsorption-desorption isotherms and scanning electron microscopy proved that the dual-ligand MOFs possessed excellent 3D spatial structures (ligand ratio is 1:1) which ensured the enantioseparation capability of the CEC system. The influence of ligand types on the chiral selectivity of MOFs was explored using racemic phenylalaninol and its single enantiomers as models. When the chiral type of the ligands is consistent, the enantioseparation ability of the CEC system is better. The chromatographic conditions such as buffer concentration, buffer pH, organic solvent addition ratio, and applied voltage were optimized, and satisfactory repeatability and stability of the CEC system were verified. Additionally, the enantioseparation mechanism of the CEC system was discussed through adsorption kinetic experiments, adsorption isotherm fitting, and thermodynamics.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuchen Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Yu H, Wang L, Liu S, Zhao B, Xiao K, Yang B, Duan H, Zhao H, Deng J. Using cellulose, starch and β-cyclodextrin poly/oligosaccharides as chiral inducers for preparing chiral particles. Carbohydr Polym 2022; 296:119944. [DOI: 10.1016/j.carbpol.2022.119944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
|
6
|
Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Anal Chim Acta 2022; 1223:340188. [DOI: 10.1016/j.aca.2022.340188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
|
7
|
Wei F, Tang J, Zuhra Z, Wang S, Wang X, Wang X, Xie G. [M(Me6Tren)X]X complex as efficacious bifunctional catalyst for CO2 cycloaddition: The synergism of the metal and halogen ions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Salama E, Ghanim M, Hassan HS, Amer WA, Ebeid EZM, El-Shazly AH, Ossman M, Elkady MF. Novel aspartic-based bio-MOF adsorbent for effective anionic dye decontamination from polluted water. RSC Adv 2022; 12:18363-18372. [PMID: 35799940 PMCID: PMC9215166 DOI: 10.1039/d2ra02333d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a cost-effective powdered Zn l-aspartic acid bio-metal organic framework (Zn l-Asp bio-MOF) was reported as an efficient adsorbent for Direct Red 81 (DR-81) as an anionic organic dye. The prepared bio-MOF was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission transmission electron microscopy (FETEM), surface area analysis (BET), and thermal gravimetrical analysis (TGA). The resulting bio-MOF has a large surface area (180.43 m2 g-1) and large mesopore volume (0.144 cm3 g-1), as well as good chemical inertness and mechanical stability. The optimum dosage from the Zn l-Asp bio-MOF was 1.0 g L-1 at pH = 7 for 95.3% adsorption of 10 ppm DR-81 after 45 min. Thermodynamic analysis results demonstrated that the decontamination processes were done with spontaneous, thermodynamically, and exothermic nature onto the fabricated bio-MOF. Kinetic parameters were well-fitted with pseudo-second-order kinetics, and the adsorption process was described by the Freundlich isotherm. The adsorption data proved that Zn l-Asp bio-MOF is an effective adsorbent for DR-81 from aqueous solutions with high stability and recycling ability for eight cycles, as well as the easy regeneration of the sorbent.
Collapse
Affiliation(s)
- Eslam Salama
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
| | - Mohamed Ghanim
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria 21934 Egypt
| | - Hassan Shokry Hassan
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
- Environmental Engineering Department, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria 21934 Egypt
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
- Department of Chemistry, College of Science, University of Bahrain Sakhir 32038 Bahrain
| | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Ahmed H El-Shazly
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria 21934 Egypt
| | - Mona Ossman
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
| | - Marwa F Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria 21934 Egypt
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
| |
Collapse
|
9
|
Hernández E, Santiago R, Moya C, Vela S, Navarro P, Palomar J. Close-cycle process to produce CO2-derived propylene carbonate based on amino acid catalyst and water. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Wang S, Zhao Y, Zhang Z, Zhang Y, Li L. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Tang J, Wei F, Ding S, Wang X, Xie G, Fan H. Azo-Functionalized Zirconium-Based Metal-Organic Polyhedron as an Efficient Catalyst for CO 2 Fixation with Epoxides. Chemistry 2021; 27:12890-12899. [PMID: 34288181 DOI: 10.1002/chem.202102089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/11/2022]
Abstract
Chemical fixation of CO2 as C1 source at ambient temperature and low pressure is an energy-saving way to make use of the green-house gas, but it still remains a challenge since efficient catalyst with high catalytic active sites is required. Here, a novel monoclinic azo-functionalized Zr-based metal-organic polyhedron (Zr-AZDA) has been prepared and applied in CO2 fixation with epoxides. The inherent azo groups not only endow Zr-AZDA with good solubilization, but also act as basic sites to enrich CO2 showing efficient synergistic catalysis as confirmed by TPD-CO2 analysis. XPS results demonstrate that the Zr active sites in Zr-AZDA possess suitable Lewis acidity, which satisfies both substrates activation and products desorption. DFT calculation indicates the energy barrier of the rate-determining step in CO2 cycloaddition could be reduced remarkably (by ca. 60.9 %) in the presence of Zr-AZDA, which may rationalize the mild and efficient reaction condition employed (80 °C and 1 atm of CO2 ). The work provides an effective multi-functional cooperative method for improvement of CO2 cycloaddition.
Collapse
Affiliation(s)
- Jia Tang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fen Wei
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoxia Wang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Guanqun Xie
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Hongbo Fan
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| |
Collapse
|
12
|
Shi L, Mao W, Zhang L, Zhao Y, Huang H, Xiao Y, Mao L, Fu Z, Yu N, Yin D. An ultrathin amino-acid based copper(II) coordination polymer nanosheet for efficient epoxidation of β-caryophyllene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01991-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Alavijeh MK, Amini MM, Notash B, Mohammadnezhad G. Formation of a potassium coordination polymer based on a novel 2-sulfono-benzene-1,3,5-tricarboxylic acid: Synthesis, characterization, and application of the organocatalyst in CO2 cycloaddition reaction. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Pan G, Wu Y, Xing R, Zhang B. Preparation of Cu(II)‐Containing MOF Catalyst and Application in the
α
,
β
‐Dehydrogenation of Saturated Ketones. ChemistrySelect 2021. [DOI: 10.1002/slct.202100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gao‐Fei Pan
- School of Materials and Metallurgy Inner Mongolia University of Science and Technology 7# Arerding Street, Kun District Baotou 014010 China
| | - Yun‐Long Wu
- School of Materials Science & Engineering Xi'an Polytechnic University Xi'an 710048 People's Republic of China
| | - Rui‐Guang Xing
- School of Materials and Metallurgy Inner Mongolia University of Science and Technology 7# Arerding Street, Kun District Baotou 014010 China
| | - Bang‐Wen Zhang
- School of Materials and Metallurgy Inner Mongolia University of Science and Technology 7# Arerding Street, Kun District Baotou 014010 China
| |
Collapse
|
16
|
Xiang W, Shen C, Lu Z, Chen S, Li X, Zou R, Zhang Y, Liu CJ. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Hernández E, Santiago R, Moya C, Navarro P, Palomar J. Understanding the CO2 valorization to propylene carbonate catalyzed by 1-butyl-3-methylimidazolium amino acid ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Husain A, Rani P, Nar KK, Singh AP, Kumar R, Bhasin KK, Kumar G. A tryptophan-based copper(ii) coordination polymer: catalytic activity towards Suzuki–Miyaura cross-coupling reactions. CrystEngComm 2021. [DOI: 10.1039/d1ce01282g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An unusual tryptophan coordination mode with copper(ii) wherein l-tryp is coordinated through the carboxylate and amine groups. A heterogeneous catalyst for the Suzuki cross-coupling reaction with ∼98% yield under normal reaction conditions.
Collapse
Affiliation(s)
- Ahmad Husain
- Department of Chemistry, DAV University, Jalandhar-144012, Punjab, India
| | - Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, India
| | - Kuldeep Kaur Nar
- Department of Chemistry, DAV University, Jalandhar-144012, Punjab, India
| | - Amit Pratap Singh
- Department of Applied Sciences, National Institute of Technology, New Delhi-110040, India
| | - Rakesh Kumar
- Department of Chemistry, MCM DAV College, Kangra-176001, Himachal Pradesh, India
| | - K. K. Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, India
| |
Collapse
|
19
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Wang HS, Wang YH, Ding Y. Development of biological metal-organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. NANOSCALE ADVANCES 2020; 2:3788-3797. [PMID: 36132764 PMCID: PMC9418943 DOI: 10.1039/d0na00557f] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 05/29/2023]
Abstract
Metal-organic frameworks (MOFs) are built using various organic ligands and metal ions (or clusters). With properties of high porosity, tunable chemical composition, and potential for post-synthetic modification, they have been applied in biomedicine, especially in bio-sensing, bio-imaging, and drug delivery. Since organic ligands and metal centers (ions or clusters) in the structure of MOFs can directly influence the property, function, and performance of MOFs, strict screening of organic ligands and metal centers is necessary. Especially, to improve the application of MOFs in the field of biomedicine, biocompatible organic ligands with low toxicity are desirable. In recent years, biological metal-organic frameworks (bio-MOFs) with ideal biocompatibility and diverse functionality have attracted wide attention. Endogenous biomolecules, including nucleobases, amino acids, peptides, proteins, porphyrins and saccharides, are employed as frameworks for MOF construction. These biological ligands coordinate with diverse metal centers in different ways, leading to the structural diversity of bio-MOFs. In this review, we summarize the organic ligand selectivity in constructing different types of bio-MOFs and their influence in biomedical applications with attractive new functions.
Collapse
Affiliation(s)
- Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
21
|
Adenine-assisted synthesis of functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced catalytic activity for the cycloaddition of carbon dioxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
MOFs-Based Catalysts Supported Chemical Conversion of CO2. Top Curr Chem (Cham) 2020; 378:11. [DOI: 10.1007/s41061-019-0269-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022]
|
23
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Wu Y, Song X, Zhang J, Xu S, Gao L, Zhang J, Xiao G. Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Li Y, Zhang X, Xu P, Jiang Z, Sun J. The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01150h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Zn(PZDC)(ATZ) with Lewis acid–base sites exhibited strong resistance to acids/alkalis and moisture and possessed high catalytic activity for CO2 transformation.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Zimin Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|