1
|
Si Y, Jiao Y, Wang M, Xiang S, Diao J, Chen X, Chen J, Wang Y, Xiao D, Wen X, Wang N, Ma D, Liu H. Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions. Nat Commun 2024; 15:4887. [PMID: 38849368 PMCID: PMC11161621 DOI: 10.1038/s41467-024-49083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
For di-nitroaromatics hydrogenation, it is a challenge to achieve the multi-step hydrogenation with high activity and selectivity due to the complexity of the process involving two nitro groups. Consequently, many precious metal catalysts suffer from low activity for this multi-step hydrogenation reaction. Herein, we employ a fully exposed Pt clusters catalyst consisting of an average of four Pt atoms on nanodiamond@graphene (Ptn/ND@G), demonstrating excellent catalytic performance for the multi-step hydrogenation of 2,4-dinitrotoluene. The TOF (40647 h-1) of Ptn/ND@G is significantly superior to that of single Pt atoms catalyst, Pt nanoparticles catalyst, and even all the known catalysts. Density functional theory calculations and absorption experiments reveal that the synergetic interaction between the multiple active sites of Ptn/ND@G facilitate the co-adsorption/activation of reactants and H2, as well as the desorption of intermediates/products, which is the key for the higher catalytic activity than single Pt atoms catalyst and Pt nanoparticles catalyst.
Collapse
Grants
- National Key R&D Program of China (2022YFA1504500, 2022YFB4003100, 2021YFA1502802), the National Natural Science Foundation of China (92145301, U21B2092, 21961160722, 91845201, 22072162), the International Partnership Program of Chinese Academy of Sciences (172GJHZ2022028MI), Shenyang Young Talents Program (RC210435), Dalian National Lab for Clean Energy (DNL Cooperation Fund 202001) and China Petroleum & Chemical Corporation (No. 420043-2)
Collapse
Affiliation(s)
- Yang Si
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, PR China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Yueyue Jiao
- State Key Laboratory of Coal Conversion, Institute Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
- National Energy Center for Coal to Clean Fuel, Synfuels China Co., Ltd, Beijing, 100871, PR China
- The University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Shengling Xiang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, PR China
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, PR China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Jiawei Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, PR China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Yue Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
- Department of Chemistry, Liaoning University, 66 Chongshan Road, Shenyang, Liaoning, 110036, PR China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
- National Energy Center for Coal to Clean Fuel, Synfuels China Co., Ltd, Beijing, 100871, PR China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, PR China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China.
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, PR China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Wang YT, Wu SM, Luo GQ, Xiao ST, Pu FF, Wang LY, Chang GG, Tian G, Yang XY. Dual Pd-Acid Sites Confined in a Hierarchical Core-Shell Structure for Hydrogenation of Nitrobenzene. Chem Asian J 2023; 18:e202300689. [PMID: 37704571 DOI: 10.1002/asia.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
A core-shell structured Pd@TS-1@meso-SiO2 catalyst with confined Pd nanometals has been fabricated by one-pot synthesis, impregnation method and sol-gel method. With the promotion of acid sites and protection of mesoporous silica shell, Pd@TS-1@meso-SiO2 shows higher activity than commercial comparison and higher stability than sample without mesoporous silica shell in the hydrogenation of nitrobenzene. The schematic illustration of the synergy effect is also proposed.
Collapse
Affiliation(s)
- Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Guo-Qiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Fu-Fei Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Li-Ying Wang
- Department State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen research institute of Wuhan University of Technology, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430071, P. R. China
| |
Collapse
|
3
|
Gu Z, Li M, Chen C, Zhang X, Luo C, Yin Y, Su R, Zhang S, Shen Y, Fu Y, Zhang W, Huo F. Water-assisted hydrogen spillover in Pt nanoparticle-based metal-organic framework composites. Nat Commun 2023; 14:5836. [PMID: 37730807 PMCID: PMC10511639 DOI: 10.1038/s41467-023-40697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023] Open
Abstract
Hydrogen spillover is the migration of activated hydrogen atoms from a metal particle onto the surface of catalyst support, which has made significant progress in heterogeneous catalysis. The phenomenon has been well researched on oxide supports, yet its occurrence, detection method and mechanism on non-oxide supports such as metal-organic frameworks (MOFs) remain controversial. Herein, we develop a facile strategy for efficiency enhancement of hydrogen spillover on various MOFs with the aid of water molecules. By encapsulating platinum (Pt) nanoparticles in MOF-801 for activating hydrogen and hydrogenation of C=C in the MOF ligand as activated hydrogen detector, a research platform is built with Pt@MOF-801 to measure the hydrogenation region for quantifying the efficiency and spatial extent of hydrogen spillover. A water-assisted hydrogen spillover path is found with lower migration energy barrier than the traditional spillover path via ligand. The synergy of the two paths explains a significant boost of hydrogen spillover in MOF-801 from imperceptible existence to spanning at least 100-nm-diameter region. Moreover, such strategy shows universality in different MOF and covalent organic framework materials for efficiency promotion of hydrogen spillover and improvement of catalytic activity and antitoxicity, opening up new horizons for catalyst design in porous crystalline materials.
Collapse
Affiliation(s)
- Zhida Gu
- College of Science, Northeastern University, Shenyang, 100819, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Mengke Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Cheng Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengyang Luo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yutao Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ruifa Su
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yu Shen
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang, 100819, China.
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| |
Collapse
|
4
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Yu H, Liu J, Wan Q, Zhao G, Gao E, Wang J, Xu B, Zhao G, Fan X. Synergistic effect of acid-base and redox properties of nano Au/CeO2-cube on selective hydrogenation of nitrobenzene to aniline. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Campos CH, Shanmugaraj K, Bustamante TM, Leal-Villarroel E, Vinoth V, Aepuru R, Mangalaraja RV, Torres CC. Catalytic production of anilines by nitro-compounds hydrogenation over highly recyclable platinum nanoparticles supported on halloysite nanotubes. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zheng B, Duan J, Tang Q. Electronic metal-support interaction constructed for preparing sinter-resistant nano-platinum catalyst with redox property. Dalton Trans 2022; 51:7491-7502. [PMID: 35506442 DOI: 10.1039/d1dt04142h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generally, support materials with particular structural properties could effectively anchor metal nanoparticles and provide lower activation barriers in heterogeneous catalysis. To tailor the structure of stable iron oxide, NiFe2O4 of inverse spinel structure was obtained by combining nickel with iron element under an alkaline environment and high-temperature calcination. The p-type conductivity of NiFe2O4 provides the possibility of constructing electronic interfacial interaction with Pt nanoparticles by electron transfer. The constructed metal-support interaction could effectively stabilize Pt nanoparticles and be further enhanced during long-term harsh calcination (700 °C for 48 h) even under an O2 atmosphere. Meanwhile, the abundant structural defects of NiFe2O4 are beneficial for constructing low-temperature redox centers with the aid of Pt nanoparticles. Pt/NiFe2O4 exhibited not only excellent activity in room-temperature oxidation (CO and HCHO) and reduction reactions (chemo-selective hydrogenation of nitroarenes), but also high stability even after storage for more than 6 months. A self-adjusting mechanism triggered by structural defects is disclosed by in situ characterization and systematic reaction results. This work demonstrates an alternative concept to construct sinter-resistant and highly-effective nano-platinum catalysts robust for oxidation and reduction reactions.
Collapse
Affiliation(s)
- Bin Zheng
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China. .,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Jialong Duan
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China.
| | - Qunwei Tang
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
9
|
Geng Y, Li H. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. CHEMSUSCHEM 2022; 15:e202102495. [PMID: 35230748 DOI: 10.1002/cssc.202102495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Hydrodeoxygenation (HDO) is regarded as a promising technology for biomass upgrading to obtain sustainable and competitive chemicals and fuels. In fact, biomass HDO over heterogeneous solid catalysts is often accompanied by the phenomenon of hydrogen spillover, which further affects the catalytic performance. Thus, it is necessary to gain in-depth understand the promoting effect of hydrogen spillover in the biomass HDO process to obtain desired conversion and selectivity. This Review summarized the extensive research on hydrogen spillover in biomass refining and discussed in detail the regulation mechanism of hydrogen spillover in biomass HDO process, mainly by regulating different active center sites on catalyst supports, such as metal sites, acid sites, surface functional groups, and defective sites, which exhibit independent and synergistic characteristics promoting catalyst activity, selectivity, and stability. Finally, the prospective of hydrogen spillover in biomass HDO applications was critically evaluated, and the key technical challenges in developing "hydrogen-free" HDO and upgrading biofuels were highlighted. The presentation of hydrogen spillover-enhanced catalytic biomass HDO in this Review will hopefully provide insight and guidance for further development of efficient catalysts and preparation of high-value chemicals in the future.
Collapse
Affiliation(s)
- Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
10
|
Zhu T, He Q, Wang Z, Zhang J, Li H, Fu H, Liao F. Self-driven in situ facile synthesis of CuO/Cu 2O for enhanced catalytic reduction of 4-nitrophenol by acetic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj02366k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of CuO, Cu2O and CuO/Cu2O catalyst structures with different morphologies are synthesized in situ by controlling the anionic species of the copper salts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).
Collapse
Affiliation(s)
- Ting Zhu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qian He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ziwei Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Juan Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hanke Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fang Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
11
|
Wang K, Zong Z, Yan Y, Xia Z, Wang D, Wu S. Facile and template-free synthesis of porous carbon modified with FeOx for transfer hydrogenation of nitroarenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00064d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous carbon modified with FeOx was developed using an in situ activation method for transfer hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Kunyu Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhipeng Zong
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yao Yan
- Fujian Key Laboratory of Electrochemcial Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Zhijun Xia
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Dehua Wang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Shuchang Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
- Fujian Key Laboratory of Electrochemcial Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| |
Collapse
|
12
|
Efficient hydrogenation catalyst designing via preferential adsorption sites construction towards active copper. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Magnetically‐recoverable Schiff base complex of Pd(II) immobilized on Fe3O4@SiO2 nanoparticles: an efficient catalyst for the reduction of aromatic nitro compounds to aniline derivatives. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Zheng B, Gan T, Shi S, Wang J, Zhang W, Zhou X, Zou Y, Yan W, Liu G. Exsolution of Iron Oxide on LaFeO 3 Perovskite: A Robust Heterostructured Support for Constructing Self-Adjustable Pt-Based Room-Temperature CO Oxidation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27029-27040. [PMID: 34096275 DOI: 10.1021/acsami.1c04836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructing highly active and stable surface sites for O2 activation is essential to lower the barrier of Pt-based catalysts for CO oxidation. Although a few active Pt-metal oxide interfaces have been reported, questions about the stability of these sites under the long-term storage and operation remain unresolved. Here, based on developing a robust FeOx/LaFeO3 heterostructure as a support, we constructed stable Pt-support interfaces to achieve highly active CO oxidation at room temperature. Even after it is kept in the air for more than 6 months, the catalyst (without pretreatment) still maintains the high activity like a fresh one, which is superior to metal hydroxide-Pt interfaces, and meets the requirements of long-term storage for emergency use. In situ characterizations and systematic reaction results showed that CO oxidation occurs through an alternative mechanism, which is triggered by intrinsic reactants and self-adjusted to a more active interface in the reaction process. Theoretical calculations and 57Fe Mössbauer spectra revealed that abundant cation vacancies significantly increase the activity of surface oxygen species and should be responsible for this unique process. This work demonstrates an alternative concept to fabricate robust and highly active Pt-based catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Bin Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Junhu Wang
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Wenxiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, 10 Xuefu Road, Dalian 116622, Liaoning, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| |
Collapse
|
15
|
Geng Y, Chen C, Gao Z, Feng X, Liu W, Li Y, Jin T, Shi Y, Zhang W, Bao M. Unsupported Nanoporous Platinum-Iron Bimetallic Catalyst for the Chemoselective Hydrogenation of Halonitrobenzenes to Haloanilines. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23655-23661. [PMID: 33980012 DOI: 10.1021/acsami.1c02734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An unsupported nanoporous platinum-iron bimetallic catalyst (PtFeNPore) was prepared with an electrochemical dealloying technique. Its structure and composition were characterized through various measurement methods, such as X-ray absorption fine structure (XAFS) and X-ray photoelectron spectroscopy (XPS). An intermetallic compound and iron oxide species were both found in the PtFeNPore catalyst. The nanoporous structure and Lewis acidity (caused by iron oxide species) of the PtFeNPore catalyst resulted in superior catalytic activity and high selectivity. The PtFeNPore-catalyzed hydrogenation of various halonitrobenzenes proceeded successfully under mild reaction conditions and produced good to excellent yields of the corresponding haloanilines with high selectivity. PtFeNPore can be recycled through magnetic separation easily and reused five times without significant deactivation.
Collapse
Affiliation(s)
- Yuxuan Geng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Chong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Zhanming Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yanhui Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China
| | - Tienan Jin
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yantao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Wei Zhang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
16
|
Electron donation of non-oxide supports boosts O 2 activation on nano-platinum catalysts. Nat Commun 2021; 12:2741. [PMID: 33980837 PMCID: PMC8115247 DOI: 10.1038/s41467-021-22946-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation. Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the authors adopt the concept of increased electron donors induced by nitrogen vacancy to develop an efficient strategy for preparing highly active and stable catalysts for molecular O2 activation.
Collapse
|
17
|
Geng L, Li G, Zhang X, Wang X, Li C, Liu Z, Zhang DS, Zhang YZ, Wang G, Han H. Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Synergistic catalysis by a hybrid nanostructure Pt catalyst for high-efficiency selective hydrogenation of nitroarenes. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Geng L, Lin Z, Li Z, An S, Zhang X, Liu Z, Zhang DS, Zhang YZ, Gao S, Han H. Facile synthesis of holey lamellar CuO via ultrasonic chemical etching toward highly efficient hydrogenation of 4-nitrophenol under mild conditions. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Strong Metal-Support Interactions between Pt Single Atoms and TiO 2. Angew Chem Int Ed Engl 2020; 59:11824-11829. [PMID: 32302045 DOI: 10.1002/anie.202003208] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Indexed: 11/09/2022]
Abstract
Strong metal-support interaction (SMSI) has gained great attention in the field of heterogeneous catalysis. However, whether single-atom catalysts can exhibit SMSI remains unknown. Here, we demonstrate that SMSI can occur on TiO2 -supported Pt single atoms but at a much higher reduction temperature than that for Pt nanoparticles (NPs). Pt single atoms involved in SMSI are not covered by the TiO2 support nor do they sink into its subsurface. The suppression of CO adsorption on Pt single atoms stems from coordination saturation (18-electron rule) rather than the physical coverage of Pt atoms by the support. Based on the new finding it is revealed that single atoms are the true active sites in the hydrogenation of 3-nitrostyrene, while Pt NPs barely contribute to the activity since the NP sites are selectively encapsulated. The findings in this work provide a new approach to study the active sites by tuning SMSI.
Collapse
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xi
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Jie Xu
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Strong Metal–Support Interactions between Pt Single Atoms and TiO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Xi
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Jie Xu
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Jun Luo
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Xu W, Lin C, Liu S, Xie H, Qiu Y, Liu W, Chen H, Qiu S, Langer R. Effect of pyrolytic temperature over MOFs templated Cu NPs embedded in N-doped carbon matrix on hydrogenation catalytic activities. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Li JH, Yu ZW, Li JQ, Fan YL, Gao Z, Xiong JB, Wang L, Tao Y, Yang LX, Xiao YX, Luo F. Constructing PtI@COF for semi-hydrogenation reactions of phenylacetylene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Liu G, Walsh AG, Zhang P. Synergism of Iron and Platinum Species for Low-Temperature CO Oxidation: From Two-Dimensional Surface to Nanoparticle and Single-Atom Catalysts. J Phys Chem Lett 2020; 11:2219-2229. [PMID: 32109069 DOI: 10.1021/acs.jpclett.9b03311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CO oxidation is one of the most studied reactions in heterogeneous catalysis. It is present in air cleaning and automotive emission control. It also participates in the removal of CO from streams of hydrogen used in fuel cells. Because of the competitive adsorption of CO and O2 over active sites, the use of Pt-based catalysts for low-temperature CO oxidation remains a challenge. Recently, great progress has been made with catalysts containing Pt-Fe species because of the contribution of Fe species to O2 activation. The structure-activity relationship and reaction mechanisms have been investigated with various Pt-Fe catalysts. In this Perspective, we give a summary of the recent advances of low-temperature CO oxidation over Pt-Fe catalysts with a focus on the synergistic effect of Pt and Fe species in the CO and O2 activation of catalytic reactions. Future prospects for the preparation of highly effective Pt-Fe catalysts are also proposed.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| | - Andrew G Walsh
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax B3H 4R2, Canada
| |
Collapse
|
25
|
Shesterkina AA, Kustov LM, Strekalova AA, Kazansky VB. Heterogeneous iron-containing nanocatalysts – promising systems for selective hydrogenation and hydrogenolysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00086h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bimetallic catalytic systems Fe–Me (Pt, Pd, Cu) demonstrate synergy in the activity/selectivity pattern in reactions involving hydrogen: selective hydrogenation of CC bonds, NO2 and carbonyl groups and hydrogenolysis of C–O bonds.
Collapse
Affiliation(s)
- Anastasiya A. Shesterkina
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
- National University of Science and Technology MISiS
| | - Leonid M. Kustov
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
- National University of Science and Technology MISiS
| | - Anna A. Strekalova
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
- National University of Science and Technology MISiS
| | - Vladimir B. Kazansky
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| |
Collapse
|
26
|
Yue S, Wang X, Li S, Sheng Y, Zou X, Lu X, Zhang C. Highly selective hydrogenation of halogenated nitroarenes over Ru/CN nanocomposites by in situ pyrolysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj02165b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogenated nitroarenes were high selectively hydrogenated on Ru/CN catalyst prepared by in situ pyrolysis.
Collapse
Affiliation(s)
- Shengnan Yue
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Shaoting Li
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Yao Sheng
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Xiujing Zou
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Chunlei Zhang
- Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
27
|
Geng L, Jian W, Jing P, Zhang W, Yan W, Bai FQ, Liu G. Crystal phase effect of iron oxides on the aerobic oxidative coupling of alcohols and amines under mild conditions: A combined experimental and theoretical study. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5030042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arrhenius plot of catalytic carbon formation from olefins on Ni, Co, and Fe has a volcano shape in the range 400–550 °C with reaction orders 0 (at lower T: Below ~500 °C) and one (at higher T: Above ~500 °C) at each side of the maximum rate. The reaction follows a catalytic route with surface decomposition of the gas (olefin) on the catalyst nanoparticle, followed by the bulk diffusion of carbon atoms and carbon nanotube growth on the opposite side. At the higher temperature region (500–550 °C), the initial surface reaction step controls the rate and the reaction order is one, both in olefins and hydrogen (H). This confirms that H is essential for the surface reaction to occur. This is very valuable information to get faster CNT growth rate at relatively low temperatures. The apparent activation energy observed must correspond with the surface reaction Ea corrected for the temperature dependence of the two molecules involved (olefin and H). Adding a noble metal (Pt, Pd) to the carbon formation catalyst is frequently found to increase the reaction rate further. This effect has been described as an H spillover since 1964. However, there is evidence that the bulk diffusion of H atoms prevails and does not “spillover” the surface diffusion. Diffusion of H atoms through the solids involved is easy, and the H atoms remain single (“independent”) until emerging on a surface.
Collapse
|
29
|
Zhao T, Zhang J, Zhang B, Liu Y, Lin Y, Wang H, Su H, Li X, Chen J. A New Route to Cyclohexanone using H
2
CO
3
as a Molecular Catalytic Ligand to Boost the Thorough Hydrogenation of Nitroarenes over Pd Nanocatalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tian‐Jian Zhao
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Jun‐Jun Zhang
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Bing Zhang
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yong‐Xing Liu
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yun‐Xiao Lin
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Hong‐Hui Wang
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Hui Su
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Xin‐Hao Li
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 People's Republic of China
| |
Collapse
|
30
|
Zhang X, Geng L, Zhang YZ, Zhang DS, Zhang R, Fu J, Gao J, Carozza JC, Zhou Z, Han H. Construction of Cu-based MOFs with enhanced hydrogenation performance by integrating open electropositive metal sites. CrystEngComm 2019. [DOI: 10.1039/c9ce01136f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A kind of new Cu(ii)-MOF with open electropositive metal Cu sites exhibits excellent activity, selectivity and reusability in hydrogenation of 4-nitrophenol to 4-aminophenol under mild conditions (25 °C, 1 atm).
Collapse
Affiliation(s)
- Xiuling Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Longlong Geng
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Yong-Zheng Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Da-Shuai Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Ranhui Zhang
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Junna Fu
- College of Chemistry and Chemical Engineering
- De Zhou University
- DeZhou
- P. R. China
| | - Jun Gao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Jesse C. Carozza
- Department of Chemistry
- University at Albany
- State University of New York
- Albany 12222
- USA
| | - Zheng Zhou
- Department of Chemistry
- University at Albany
- State University of New York
- Albany 12222
- USA
| | - Haixiang Han
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|