1
|
Yan H, Liu T, Lv Y, Xu X, Xu J, Fang X, Wang X. Doping SnO 2 with metal ions of varying valence states: discerning the importance of active surface oxygen species vs. acid sites for C 3H 8 and CO oxidation. Phys Chem Chem Phys 2024; 26:3950-3962. [PMID: 38250964 DOI: 10.1039/d3cp05840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To elucidate the valence state effect of doping cations, Li+, Mg2+, Cr3+, Zr4+ and Nb5+ with radii similar to Sn4+ (CN = 6) were chosen to dope tetragonal SnO2. Cr3+, Zr4+ and Nb5+ can enter the SnO2 lattice to produce solid solutions, thus creating more surface defects. However, Li+ and Mg2+ can only stay on the SnO2 surface as nitrates, thus suppressing the surface defects. The rich surface defects facilitate the generation of active O2-/Oδ- and acid sites on the solid solution catalysts, hence improving the reactivity. On the solid solution catalysts active for propane combustion, several reactive intermediates can be formed, but are negligible on those with low activity. It is confirmed that for propane combustion, surface acid sites play a more vital role than active oxygen sites. Nevertheless, for CO oxidation, the active oxygen sites play a more vital role than the acid sites.
Collapse
Affiliation(s)
- Haiming Yan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Teng Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Yu Lv
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Junwei Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P.R. China.
| |
Collapse
|
2
|
Zhang Y, Wang M, Li Q, Zhang M, Liu C, Liu Q, Wang W, Zhang Z, Han R, Ji N. Regulating Electron Metal-Support Interaction to Suppress N 2O Formation in the Selective Catalytic Oxidation of Ammonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:895-905. [PMID: 38134359 DOI: 10.1021/acs.est.3c06691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
N2O is a common byproduct in the selective catalytic oxidation of ammonia, and its generation often needs to be inhibited due to its strong greenhouse effect. In this paper, using Ag/ZSO-Y as a model catalyst, the N2O selectivity was reduced by 30% through modulation of the electron metal-support interaction. The results demonstrate that the work function of the support can be regulated by the content of the doping element. As the Zr content increases in SnO2, the work function of the support decreases. Moreover, there is a positive correlation between the charge transfer amount and the work function of the support. A series of in situ DRIFTS and density functional theory calculations revealed that the -NO and -N reactions are the primary pathways for N2O formation. By adjustment of the work function of the support through varying the Zr doping level, the electronic structure of Ag NPs was further tuned, resulting in an increased reaction energy barrier for -NO and -N reactions, effectively suppressing N2O formation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Meng Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Qing Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Min Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Ziyin Zhang
- Langfang City Beichen Entrepreneurship Resin Materials Incorporated Company, Langfang 065000, China
- Hebei Province New Resin Material Technology Innovation Center, Langfang 065000, China
- New Catalytic Materials Engineering Research Center for Air Pollutant Control, Langfang 065000, China
| | - Rui Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Filatova D, Rumyantseva M. Additives in Nanocrystalline Tin Dioxide: Recent Progress in the Characterization of Materials for Gas Sensor Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6733. [PMID: 37895715 PMCID: PMC10608681 DOI: 10.3390/ma16206733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Tin dioxide has huge potential and is widely studied and used in different fields, including as a sensitive material in semiconductor gas sensors. The specificity of the chemical activity of tin dioxide in its interaction with the gas phase is achieved via the immobilization of various modifiers on the SnO2 surface. The type of additive, its concentration, and the distribution between the surface and the volume of SnO2 crystallites have a significant effect on semiconductor gas sensor characteristics, namely sensitivity and selectivity. This review discusses the recent approaches to analyzing the composition of SnO2-based nanocomposites (the gross quantitative elemental composition, phase composition, surface composition, electronic state of additives, and mutual distribution of the components) and systematizes experimental data obtained using a set of analytical methods for studying the concentration of additives on the surface and in the volume of SnO2 nanocrystals. The benefits and drawbacks of new approaches to the high-accuracy analysis of SnO2-based nanocomposites by ICP MS and TXRF methods are discussed.
Collapse
|
4
|
Zhang Y, Zhang M, Zang Y, Wang H, Liu C, Wei L, Wang Y, He L, Wang W, Zhang Z, Han R, Ji N, Song C, Lu X, Ma D, Sun Y, Liu Q. Elimination of NH 3 by Interfacial Charge Transfer over the Ag/CeSnO x Tandem Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Min Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yuchao Zang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Huijun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Liehao Wei
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yuhe Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Lijun He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Weichao Wang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation & Pollution Control, MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People’s Republic of China
| | - Ziyin Zhang
- Langfang City Beichen Entrepreneurship Resin Materials Incorporated Company, Langfang 065000, China
- Hebei Province New Resin Material Technology Innovation Center, Langfang 065000, People’s Republic of China
- New Catalytic Materials Engineering Research Center for Air Pollutant Control, Langfang 065000, People’s Republic of China
| | - Rui Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| | - Yanrong Sun
- College of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, People’s Republic of China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, People’s Republic of China
| |
Collapse
|
5
|
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Liu J, Ji X, Shi J, Wang L, Jian P, Yan X, Wang D. Experimental and theoretical investigation of the tuning of electronic structure in SnO2via Co doping for enhanced styrene epoxidation catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01982a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Co doping is an effective strategy for the tuning of electronic structure in SnO2, which leads to a huge boost in the styrene epoxidation reaction performance.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xingyang Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lixia Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Yan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Yu X, Dai L, Peng Y, Deng J, Liu Y, Jing L, Zhang X, Hou Z, Wang J, Dai H. High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WO x: Insights into the Effects of P-Doping and H 2O Introduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14906-14916. [PMID: 34633800 DOI: 10.1021/acs.est.1c05586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ru-based catalysts for catalytic combustion of high-toxicity Cl-containing volatile organic compounds are inclined to produce Cl2 instead of ideal HCl due to the Deacon reaction. We herein reported that the three-dimensionally ordered macroporous (3DOM) WOx-supported RuP nanocatalyst greatly improved HCl selectivity (at 400 °C, increased from 66.0% over Ru/3DOM WOx to 96.4% over RuP/3DOM WOx) and reduced chlorine-containing byproducts for 1,2-dichloroethane (1,2-DCE) oxidation. P-doping enhanced the number of structural hydroxyl groups and Brønsted acid sites. The isotopic 1,2-DCE temperature-programmed desorption experiment in the presence of H218O indicated the generation of a new active oxygen species 16O18O that participated in the reaction. Generally, P-doping and H2O introduction could promote the exchange reaction between Cl and hydroxyl groups, rather than oxygen defects, and then benefit the production of HCl and reduce the generation of other chlorine species or Cl2, via the reaction processes of C2H3Cl → alcohol → aldehyde → carboxylic acids.
Collapse
Affiliation(s)
- Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lingyun Dai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xing Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jia Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
8
|
Feng X, Zhang S, Wang F, Ma J, Xu X, Lai Q, Xu J, Fang X, Wang X. Metallic Ag Confined on SnO
2
Surface for Soot Combustion: the Influence of Ag Distribution and Dispersion on the Reactivity. ChemCatChem 2021. [DOI: 10.1002/cctc.202100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohui Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Shijing Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Fumin Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Jun Ma
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Qiang Lai
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Junwei Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis College of Chemistry Nanchang University Xuefu Avenue, Honggutan New District Nanchang P.R. China
| |
Collapse
|
9
|
Zhang J, Tian H, Yu Y, Jiang Z, Ma M, He C. Novel CuO@TiO2 Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of NOx with NH3. Catal Letters 2021. [DOI: 10.1007/s10562-020-03515-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|