1
|
Huang C, Yu J, Yue Zhang C, Cui Z, He R, Yang L, Nan B, Li C, Qi X, Qi X, Li J, Yuan Zhou J, Usoltsev O, Simonelli L, Arbiol J, Lei YJ, Sun Q, Wang G, Cabot A. Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2025; 64:e202420488. [PMID: 39688080 DOI: 10.1002/anie.202420488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction. Specifically, a tellurium-doped, carbon-supported bismuth selenide with Se vacancies (Te-Bi2Se3-x@C) is prepared and tested as a sulfur host in LSB cathodes. X-ray absorption and in situ X-ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te-Bi2Se3-x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh ⋅ g-1 at 0.1 C, excellent rate performance with 655 mAh ⋅ g-1 at 5 C, and near-integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg ⋅ cm-2, a cathode capacity exceeding 8 mAh ⋅ cm-2 is sustained at 0.1 C current rate, with 6.4 mAh ⋅ cm-2 retained after 300 cycles under lean electrolyte conditions (6.8 μL ⋅ mg-1).
Collapse
Affiliation(s)
- Chen Huang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of, Barcelona, 08028, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Cui
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ren He
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Linlin Yang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Bingfei Nan
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Canhuang Li
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of, Barcelona, 08028, Spain
| | - Xuede Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, 610106, Chengdu, China
| | - Jin Yuan Zhou
- School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Oleg Usoltsev
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- ICREA Pg. Lluis Companys, 08010, Barcelona, Catalonia, Spain
| | - Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Sun
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Andreu Cabot
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA Pg. Lluis Companys, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Hu T, Yue Z, Wang Y, Yu Y, Chang Y, Pei L, Chen W, Han P, Martens W, Waclawik ER, Wu H, Yong Zhu H, Jia J. Cu@CuO x/WO 3 with photo-regulated singlet oxygen and oxygen adatoms generation for selective photocatalytic aromatic amines to imines. J Colloid Interface Sci 2024; 663:632-643. [PMID: 38430833 DOI: 10.1016/j.jcis.2024.02.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Photocatalysts can absorb light and activate molecular O2 under mild conditions, but the generation of unsuitable reactive oxygen species often limits their use in synthesizing fine chemicals. To address this issue, we disperse 1 wt% copper on tungsten trioxide (WO3) support to create an efficient catalyst for selective oxidative coupling of aromatic amines to imines under sunlight irradiation at room temperature. Copper consists of a metallic copper core and an oxide shell. Experimental and density functional theory calculations have confirmed that Cu2O is the primary activation site. Under λ < 475 nm, the light excites electrons of the valence bands in Cu2O and WO3, which activate O2 to superoxide radical •O2-. Then rapidly transforms into oxygen adatoms (•O) and oxygen anion radicals (•O-) species on the surface of Cu2O. Simultaneously, it is captured by holes in the WO3 valence band to generate singlet oxygen (1O2). •O bind to 1O2 promoting the coupling reaction of amines. When λ > 475 nm, intense light absorption due to the localized surface plasmon resonance excites numerous electrons in Cu to promote the oxidative coupling with the adsorbed O2. This study presents a promising approach towards the design of high-performance photocatalysts for solar energy conversion and environmentally-friendly oxidative organic synthesis.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yonghe Yu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yuhong Chang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Linjuan Pei
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Wenwen Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Pengfei Han
- College of Chemistry and Chemical Engineering Hunan University Changsha, 410082, PR China
| | - Wayde Martens
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Eric R Waclawik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Huai Yong Zhu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
3
|
Wang Y, Xue S, Liao Y, Wang H, Lu Q, Tang N, Du F. In situ construction of Ag/Bi 2O 3/Bi 5O 7I heterojunction with Bi-MOF for enhance the photocatalytic efficiency of bisphenol A by facet-coupling and s-scheme structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121342. [PMID: 38830282 DOI: 10.1016/j.jenvman.2024.121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
In this study, Ag/Bi2O3/Bi5O7I with s-scheme heterostructures were successfully synthesized in situ by nano-silver modification of CUA-17 and halogenated hydrolysis.The growth rate of Bi2O3 crystals was effectively controlled by adjusting the doping amount of Ag, resulting in the formation of a facet-coupling heterojunctions. Through the investigation of the microstructure and compositional of catalysts, it has been confirmed that an intimate facet coupling between the Bi2O3 (120) facet and the Bi5O7I (312) facet, which provides robust support for charge transfer. Under visible light irradiation, the AgBOI.3 heterojunction photocatalyst exhibited an outstanding degradation rate of 98.2% for Bisphenol A (BPA) with excellent stability. Further characterization using optical, electrochemical, impedance spectroscopy, and electron spin resonance techniques revealed significantly enhanced efficiency in photogenerated charge separation and transfer, and confirming the s-scheme structure of the photocatalyst. Density functional theory calculations was employed to elucidate the mechanism of BPA degradation and the degradation pathway of BPA was investigated by LC-MS. Finally, the toxicity of the degradation intermediates was evaluated using T.E.S.T software.
Collapse
Affiliation(s)
- Yong Wang
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shikai Xue
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuhao Liao
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Haiyan Wang
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fuyou Du
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
4
|
Qiu J, Meng K, Zhang Y, Cheng B, Zhang J, Wang L, Yu J. COF/In 2S 3 S-Scheme Photocatalyst with Enhanced Light Absorption and H 2O 2-Production Activity and fs-TA Investigation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400288. [PMID: 38411357 DOI: 10.1002/adma.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Photocatalytic hydrogen peroxide (H2O2) synthesis from water and O2 is an economical, eco-friendly, and sustainable route for H2O2 production. However, single-component photocatalysts are subjected to limited light-harvesting range, fast carrier recombination, and weak redox power. To promote photogenerated carrier separation and enhance redox abilities, an organic/inorganic S-scheme photocatalyst is fabricated by in situ growing In2S3 nanosheets on a covalent organic framwork (COF) substrate for efficient H2O2 production in pure water. Interestingly, compared to unitary COF and In2S3, the COF/In2S3 S-scheme photocatalysts exhibit significantly larger light-harvesting range and stronger visible-light absorption. Partial density of state calculation, X-ray photoelectron spectroscopy, and femtosecond transient absorption spectroscopy reveal that the coordination between In2S3 and COF induces the formation of mid-gap hybrid energy levels, leading to smaller energy gaps and broadened absorption. Combining electron spin resonance spectroscopy, radical-trapping experiments, and isotope labeling experiments, three pathways for H2O2 formation are identified. Benefited from expanded light-absorption range, enhanced carrier separation, strong redox power, and multichannel H2O2 formation, the optimal composite shows an impressive H2O2-production rate of 5713.2 µmol g-1 h-1 in pure water. This work exemplifies an effective strategy to ameliorate COF-based photocatalysts by building S-scheme heterojunctions and provides molecular-level insights into their impact on energy level modulation.
Collapse
Affiliation(s)
- Junyi Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kai Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng St, Wuhan, 430078, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng St, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng St, Wuhan, 430078, P. R. China
| |
Collapse
|
5
|
Wang X, Li X, Che G, Zhu E, Guo H, Charpentier PA, Xu WZ, Liu C. Enhanced Photocatalytic Properties of All-Organic IDT-COOH/O-CN S-Scheme Heterojunctions Through π-π Interaction and Internal Electric Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6367-6381. [PMID: 38270091 DOI: 10.1021/acsami.3c16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Herein, we present a distinct methodology for the in situ electrostatic assembly method for synthesizing a conjugated (IDT-COOH)/oxygen-doped g-C3N4 (O-CN) S-scheme heterojunction. The electron delocalization effect due to π-π interactions between O-CN and self-assembled IDT-COOH favors interfacial charge separation. The self-assembled IDT-COOH/O-CN exhibits a broadened visible absorption to generate more charge carriers. The internal electric field between the IDT-COOH and the O-CN interface provides a directional charge-transfer channel to increase the utilization of photoinduced charge carriers. Moreover, the active species (•O2-, h+, and 1O2) produced by IDT-COOH/O-CN under visible light play important roles in photocatalytic disinfection. The optimum 40% IDT-COOH/O-CN can kill 7-log of methicillin-resistant Staphylococcus aureus (MRSA) cells in 2 h and remove 88% tetracycline (TC) in 5 h, while O-CN only inactivates 1-log of MRSA cells and degrades 40% TC. This work contributes to a promising method to fabricate all-organic g-C3N4-based S-scheme heterojunction photocatalysts with a wide range of optical responses and enhanced exciton dissociation.
Collapse
Affiliation(s)
- Xin Wang
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Xiaohuan Li
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Guangbo Che
- College of Chemistry, Baicheng Normal University, Baicheng 137000, Jilin, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| | - Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| | - Haiyong Guo
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Paul A Charpentier
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - William Z Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, Jilin, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, P. R. China
| |
Collapse
|
6
|
He B, Xiao P, Wan S, Zhang J, Chen T, Zhang L, Yu J. Rapid Charge Transfer Endowed by Interfacial Ni-O Bonding in S-scheme Heterojunction for Efficient Photocatalytic H 2 and Imine Production. Angew Chem Int Ed Engl 2023; 62:e202313172. [PMID: 37908153 DOI: 10.1002/anie.202313172] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Cooperative coupling of H2 evolution with oxidative organic synthesis is promising in avoiding the use of sacrificial agents and producing hydrogen energy with value-added chemicals simultaneously. Nonetheless, the photocatalytic activity is obstructed by sluggish electron-hole separation and limited redox potentials. Herein, Ni-doped Zn0.2 Cd0.8 S quantum dots are chosen after screening by DFT simulation to couple with TiO2 microspheres, forming a step-scheme heterojunction. The Ni-doped configuration tunes the highly active S site for augmented H2 evolution, and the interfacial Ni-O bonds provide fast channels at the atomic level to lower the energy barrier for charge transfer. Also, DFT calculations reveal an enhanced built-in electric field in the heterojunction for superior charge migration and separation. Kinetic analysis by femtosecond transient absorption spectra demonstrates that expedited charge migration with electrons first transfer to Ni2+ and then to S sites. Therefore, the designed catalyst delivers drastically elevated H2 yield (4.55 mmol g-1 h-1 ) and N-benzylidenebenzylamine production rate (3.35 mmol g-1 h-1 ). This work provides atomic-scale insights into the coordinated modulation of active sites and built-in electric fields in step-scheme heterojunction for ameliorative photocatalytic performance.
Collapse
Affiliation(s)
- Bowen He
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
7
|
Tang J, Xu R, Sui G, Guo D, Zhao Z, Fu S, Yang X, Li Y, Li J. Double-Shelled Porous g-C 3 N 4 Nanotubes Modified with Amorphous Cu-Doped FeOOH Nanoclusters as 0D/3D Non-Homogeneous Photo-Fenton Catalysts for Effective Removal of Organic Dyes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208232. [PMID: 36871148 DOI: 10.1002/smll.202208232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Indexed: 06/02/2023]
Abstract
Graphite phased carbon nitride (g-C3 N4 ) has attracted extensive attention attributed to its non-toxic nature, remarkable physical-chemical stability, and visible light response properties. Nevertheless, the pristine g-C3 N4 suffers from the rapid photogenerated carrier recombination and unfavorable specific surface area, which greatly limit its catalytic performance. Herein, 0D/3D Cu-FeOOH/TCN composites are constructed as photo-Fenton catalysts by assembling amorphous Cu-FeOOH clusters on 3D double-shelled porous tubular g-C3 N4 (TCN) fabricated through one-step calcination. Combined density functional theory (DFT) calculations, the synergistic effect between Cu and Fe species could facilitate the adsorption and activation of H2 O2 , and the separation and transfer of photogenerated charges effectively. Thus, Cu-FeOOH/TCN composites acquire a high removal efficiency of 97.8%, the mineralization rate of 85.5% and a first-order rate constant k = 0.0507 min-1 for methyl orange (MO) (40 mg L-1 ) in photo-Fenton reaction system, which is nearly 10 times and 21 times higher than those of FeOOH/TCN (k = 0.0047 min-1 ) and TCN (k = 0.0024 min-1 ), respectively, indicating its universal applicability and desirable cyclic stability. Overall, this work furnishes a novel strategy for developing heterogeneous photo-Fenton catalysts based on g-C3 N4 nanotubes for practical wastewater treatment.
Collapse
Affiliation(s)
- Jing Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Rongping Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Zhenlong Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Yue Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266071, P. R. China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| |
Collapse
|
8
|
Adhikari S, Mandal S, Kim DH. Recent Development Strategies for Bismuth-Driven Materials in Sustainable Energy Systems and Environmental Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206003. [PMID: 36526436 DOI: 10.1002/smll.202206003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bismuth(Bi)-based materials have gained considerable attention in recent decades for use in a diverse range of sustainable energy and environmental applications due to their low toxicity and eco-friendliness. Bi materials are widely employed in electrochemical energy storage and conversion devices, exhibiting excellent catalytic and non-catalytic performance, as well as CO2 /N2 reduction and water treatment systems. A variety of Bi materials, including its oxides, chalcogenides, oxyhalides, bismuthates, and other composites, have been developed for understanding their physicochemical properties. In this review, a comprehensive overview of the properties of individual Bi material systems and their use in a range of applications is provided. This review highlights the implementation of novel strategies to modify Bi materials based on morphological and facet control, doping/defect inclusion, and composite/heterojunction formation. The factors affecting the development of different classes of Bi materials and how their control differs between individual Bi compounds are also described. In particular, the development process for these material systems, their mass production, and related challenges are considered. Thus, the key components in Bi compounds are compared in terms of their properties, design, and applications. Finally, the future potential and challenges associated with Bi complexes are presented as a pathway for new innovations.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sandip Mandal
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Oryong-dong, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
9
|
Han J, Pang M, Meng D, Qiu J, Wang D. Construction of Bouquet-like Bi 2Se 3/Bi 2O 3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1896. [PMID: 36903010 PMCID: PMC10004082 DOI: 10.3390/ma16051896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Using low-density solar energy in the environment and converting it into chemical energy that can drive the degradation of organic pollutants is considered to be a very promising strategy for solving the problem of environmental pollution. The efficacy of photocatalytic destruction of organic contaminants is nonetheless constrained by the high composite rate of photogenic carriers, insufficient light absorption and utilization impact, and sluggish charge transfer rate. In this work, we created a new type of heterojunction photocatalyst with a spherical Bi2Se3/Bi2O3@Bi core-shell structure and investigated its degrading properties of organic pollutants in the environment. Interestingly, benefiting from the fast electron transfer capability of the Bi0 electron bridge, the charge separation and transfer efficiency between Bi2Se3 and Bi2O3 is greatly improved. In this photocatalyst, Bi2Se3 not only has a photothermal effect to speed up the process of photocatalytic reaction, but also has fast electrical conductivity of topological materials at the surface, which speeds up the transmission efficiency of photogenic carriers. As expected, the removal performance of the Bi2Se3/Bi2O3@Bi photocatalyst to atrazine is 4.2 and 5.7 times higher than that of the original Bi2Se3 and Bi2O3. Meanwhile, the best samples Bi2Se3/Bi2O3@Bi showed 98.7%, 97.8%, 69.4%, 90.6%, 91.2%, 77.2%, 97.7%, and 98.9% removal of ATZ, 2,4-DCP, SMZ, KP, CIP, CBZ, OTC-HCl, and RhB, and 56.8%, 59.1%, 34.6%, 34.5%, 37.1%, 73.9%, and 78.4% mineralization. Through characterization such as XPS and electrochemical workstations, it is proved that the photocatalytic properties of Bi2Se3/Bi2O3@Bi catalysts are far superior to other materials, and a suitable photocatalytic mechanism is proposed. A novel form of bismuth-based compound photocatalyst is anticipated to be produced as a result of this research in order to address the increasingly critical problem of environmental water pollution in addition to presenting fresh avenues for the creation of adaptable nanomaterials for additional environmental applications.
Collapse
Affiliation(s)
- Juncheng Han
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Menghan Pang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Donghuan Meng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianrong Qiu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dongbo Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Shi L, Yin J, Liu Y, Liu H, Zhang H, Tang H. Embedding Cu3P quantum dots onto BiOCl nanosheets as a 0D/2D S-scheme heterojunction for photocatalytic antibiotic degradation. CHEMOSPHERE 2022; 309:136607. [PMID: 36179920 DOI: 10.1016/j.chemosphere.2022.136607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The development of highly efficient photocatalysts is vital for solvinge the problem of environmental pollution. In this study, a novel zero-/two-dimensional (0D/2D) S-scheme heterojunction was fabricated by integrating 0D copper phosphide (Cu3P) quantum dots (QDs) with a size in the range of 3-8 nm onto 2D bismuth oxychloride (BiOCl) nanosheets using a self-assembly tactic. The Cu3P/BiOCl presented intimate interface contact and high photocatalytic activity for the degradation of antibiotics (tetracycline hydrochloride (TC), oxytetracycline, ofloxacin). The optimal sample exhibited the highest photocatalytic TC degradation, with a total removal rate of 86% after 6 min under full-spectrum irradiation, which was higher than that of compared to individual BiOCl. The improved activity of the Cu3P/BiOCl heterojunction was attributed to the enhanced separation of the photogenerated carriers due to the S-scheme mode which can promote the recombination of useless photogenerated carriers and maintain photogenerated carriers with stronger redox potentials for photocatalytic reaction. In addition, employing Cu3P QDs and BiOCl nanosheets to construct an S-scheme composite can offer abundant active sites for antibiotic degradation. In brief, this study demonstrates that Cu3P QDs are an effective cocatalyst for degrading organic pollutants, which provides novel inspiration for the future design of green recycling photocatalysts for wastewater remediation.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Jiangning Yin
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yanru Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hanqiong Liu
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hao Zhang
- Department of Emergency, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Liu J, Huang L, Li Y, Yao J, Shu S, Huang L, Song Y, Tian Q. Constructing an S-scheme CuBi2O4/Bi4O5I2 heterojunction for light emitting diode-driven pollutant degradation and bacterial inactivation. J Colloid Interface Sci 2022; 621:295-310. [DOI: 10.1016/j.jcis.2022.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
|
12
|
Li N, Fan H, Su J, Gao Y, Ge L. Ultrathin Bi 2Se 3/CdS composite for efficient photocatalytic hydrogen evolution via high interfacial charge separation and photothermal effect. NEW J CHEM 2022. [DOI: 10.1039/d2nj04709h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ultrathin Bi2Se3 nanosheets/CdS nanoparticles were prepared, which display excellent photocatalytic H2 activity, ascribed to the synergistic mechanism of the unusual transfer process of high-energy electrons and the photothermal effect.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
- Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
| | - Haikuan Fan
- Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
| | - Junhui Su
- Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
| | - Yangqin Gao
- Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
| | - Lei Ge
- Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
- Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing 102249, China
| |
Collapse
|