1
|
Deinum EE, Jacobs B. Rho of Plants patterning: linking mathematical models and molecular diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1274-1288. [PMID: 37962515 PMCID: PMC10901209 DOI: 10.1093/jxb/erad447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
ROPs (Rho of Plants) are plant specific small GTPases involved in many membrane patterning processes and play important roles in the establishment and communication of cell polarity. These small GTPases can produce a wide variety of patterns, ranging from a single cluster in tip-growing root hairs and pollen tubes to an oriented stripe pattern controlling protoxylem cell wall deposition. For an understanding of what controls these various patterns, models are indispensable. Consequently, many modelling studies on small GTPase patterning exist, often focusing on yeast or animal cells. Multiple patterns occurring in plants, however, require the stable co-existence of multiple active ROP clusters, which does not occur with the most common yeast/animal models. The possibility of such patterns critically depends on the precise model formulation. Additionally, different small GTPases are usually treated interchangeably in models, even though plants possess two types of ROPs with distinct molecular properties, one of which is unique to plants. Furthermore, the shape and even the type of ROP patterns may be affected by the cortical cytoskeleton, and cortex composition and anisotropy differ dramatically between plants and animals. Here, we review insights into ROP patterning from modelling efforts across kingdoms, as well as some outstanding questions arising from these models and recent experimental findings.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Ras2 is important for growth and pathogenicity in Fusarium circinatum. Fungal Genet Biol 2021; 150:103541. [PMID: 33639303 DOI: 10.1016/j.fgb.2021.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
In this study, we investigated to possible role of Ras2 in Fusarium circinatum- a fungus that causes pine pitch canker disease on many different pine species and has a wide geographic distribution. This protein is encoded by the RAS2 gene and has been shown to control growth and pathogenicity in a number of fungi in a mitogen-activated protein kinase- and/or cyclic adenosyl monophosphate pathway-dependent manner. The aim was therefore to characterize the phenotypes of RAS2 gene knockout and complementation mutants of F. circinatum. These mutants were generated by transforming protoplasts of the fungus with suitable split-marker constructs. The mutant strains, together with the wild type strain, were used in growth studies as well as pathogenicity assays on Pinus patula seedlings. Results showed that the knockout mutant strain produced significantly smaller lesions compared to the complementation mutant and wild type strains. Growth studies also showed significantly smaller colonies and delayed conidial germination in the knockout mutant strain compared to the complement mutant and wild type strains. Interestingly, the knockout mutant strain produced more macroconidia than the wild type strain. Collectively, these results showed that Ras2 plays an important role in both growth and pathogenicity of F. circinatum. Future studies will seek to determine the pathway(s) through which Ras2 controls these traits in F. circinatum.
Collapse
|
3
|
Hassan M, Zahid S, Shahzadi S, Malik E, Zaib S, Iqbal J, Shamim S, Malik A. Mechanistic insight of DACH1 receptor in the development of carcinoma insurgence through MD simulation studies. J Biomol Struct Dyn 2020; 40:742-751. [PMID: 32924784 DOI: 10.1080/07391102.2020.1818624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteins are key player in the prognosis and therapeutics of carcinomas through the interactions of downstream signalling cascades. Current work insight the structural and mutational analysis of DACH1 in association with carcinogenesis. The homology modelling was employed to predict mutant and wild protein models and their reliability and accuracy was verified through multiple online approaches. Furthermore, MD simulation technique was employed to check the mutation effects on the stability of DACH1 through root mean square deviation and fluctuation graphs. Our results proposed that DACH1 mutation (C188Y) may cause lethal effects and can disturb the DACH1 structure. The observed mutational results showed that C188Y may cause some lethal effect in human body. Based on aforementioned computational assessments, it has concluded that DACH1 could be used as good therapeutic target in the prognosis and therapeutic of carcinoma insurgence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | - Erum Malik
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan.,Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Isoprenylcysteine Carboxyl Methyltransferase and Its Substrate Ras Are Critical Players Regulating TLR-Mediated Inflammatory Responses. Cells 2020; 9:cells9051216. [PMID: 32422978 PMCID: PMC7291029 DOI: 10.3390/cells9051216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-β-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.
Collapse
|
5
|
Al Abdallah Q, Martin-Vicente A, Souza ACO, Ge W, Fortwendel JR. C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus. Front Microbiol 2018; 9:562. [PMID: 29632525 PMCID: PMC5879109 DOI: 10.3389/fmicb.2018.00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 11/22/2022] Open
Abstract
RasA is a major regulator of fungal morphogenesis and virulence in Aspergillus fumigatus. The proper localization of RasA to the plasma membrane is essential for the formation of invasive hyphae during infection. In yeast, the localization of Ras2p to the plasma membrane is orchestrated by several post-translational modifications (PTM) at the C-terminal CAAX box that are thought to occur in sequential order. These PTMs include: (1) CAAX motif farnesylation by the farnesyltransferase complex composed of Ram1p and Ram2p; (2) proteolysis of the -AAX residues by Rce1p or Ste24p; (3) methylation of the remaining prenylated cysteine residue by Ste14p, and; (4) palmitoylation at a single conserved cysteine residue mediated by the Erf2p/Erf4p palmitoyltransferase. We previously reported that homologs of each RasA PTM enzyme are conserved in A. fumigatus. Additionally, we delineated a major role for protein farnesylation in A. fumigatus growth and virulence. In this work, we characterize the post-prenylation processing enzymes of RasA in A. fumigatus. The genes encoding the RasA post-prenylation enzymes were first deleted and examined for their roles in growth and regulation of RasA. Only when strains lacked cppB, the A. fumigatus homologue of yeast RCE1, there was a significant reduction in fungal growth and conidial germination. In addition, cppB-deletion mutants displayed hypersensitivity to the cell wall-perturbing agents Calcofluor White and Congo Red and the cell wall biosynthesis inhibitor Caspofungin. In contrast to the previously published data in yeast, the deletion of post-prenylation modifying enzymes did not alter the plasma membrane localization or activation of RasA. To delineate the molecular mechanisms underlying these differences, we investigated the interplay between dual-palmitoylation of the RasA hypervariable region and CAAX proteolysis for stabilization of RasA at the plasma membrane. Our data indicate that, in the absence of proper CAAX proteolysis, RasA accumulation at the plasma membrane is stabilized by dual palmitoyl groups on the dual cysteine residues. Therefore, we conclude CAAX proteolysis and dual-palmitoylation of the hypervariable region is important for maintaining a stable attachment association of RasA with the plasma membrane to support optimal fungal growth and development.
Collapse
Affiliation(s)
- Qusai Al Abdallah
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ana Camila Oliveira Souza
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
6
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
7
|
Zha S, Yin Y, Wang Y, Huang Y, Li Y, Wang Z. Cloning and functional analysis of farnesyl pyrophosphate synthase (FPPS) gene from Mylabris cichorii. Biotechnol Appl Biochem 2017; 64:667-676. [DOI: 10.1002/bab.1494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 12/30/2015] [Accepted: 02/28/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Shenfang Zha
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yu Wang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yi Huang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Yan Li
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide; School of Life Science; Chongqing University; Chongqing People's Republic of China
| |
Collapse
|
8
|
Hildebrandt ER, Cheng M, Zhao P, Kim JH, Wells L, Schmidt WK. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes. eLife 2016; 5. [PMID: 27525482 PMCID: PMC5014548 DOI: 10.7554/elife.15899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/14/2016] [Indexed: 11/21/2022] Open
Abstract
The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI:http://dx.doi.org/10.7554/eLife.15899.001
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Michael Cheng
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
9
|
Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis. mSphere 2016; 1:mSphere00084-15. [PMID: 27303728 PMCID: PMC4894686 DOI: 10.1128/msphere.00084-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/03/2016] [Indexed: 12/01/2022] Open
Abstract
Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus. Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCECryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.
Collapse
|
10
|
Manandhar SP, Hildebrandt ER, Schmidt WK. Small-molecule inhibitors of the Rce1p CaaX protease. ACTA ACUST UNITED AC 2008; 12:983-93. [PMID: 17942791 DOI: 10.1177/1087057107307226] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC(50) values of these 9 compounds were in the low micromolar range for both yeast (6-35 microM) and human Rce1p (0.4-46 microM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
11
|
Porter SB, Hildebrandt ER, Breevoort SR, Mokry DZ, Dore TM, Schmidt WK. Inhibition of the CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl ketones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:853-62. [PMID: 17467817 PMCID: PMC1976251 DOI: 10.1016/j.bbamcr.2007.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/16/2007] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
The CaaX proteases Rce1p and Ste24p can independently promote a proteolytic step required for the maturation of certain isoprenylated proteins. Although functionally related, Rce1p and Ste24p are unrelated in primary sequence. They have distinct enzymatic properties, which are reflected in part by their distinct inhibitor profiles. Moreover, Rce1p has an undefined catalytic mechanism, whereas Ste24p is an established zinc-dependent metalloprotease. This study demonstrates that both enzymes are inhibited by peptidyl (acyloxy)methyl ketones (AOMKs), making these compounds the first documented dual specificity inhibitors of the CaaX proteases. Further investigation of AOMK-mediated inhibition reveals that varying the peptidyl moiety can significantly alter the inhibitory properties of AOMKs toward Rce1p and Ste24p and that these enzymes display subtle differences in sensitivity to AOMKs. This observation suggests that this compound class could potentially be engineered to be selective for either of the CaaX proteases. We also demonstrate that the reported sensitivity of Rce1p to TPCK is substrate-dependent, which significantly alters the interpretation of certain reports having used TPCK sensitivity for mechanistic classification of Rce1p. Finally, we show that an AOMK inhibits the isoprenylcysteine carboxyl methyltransferase Ste14p. In sum, our observations raise important considerations regarding the specificity of agents targeting enzymes involved in the maturation of isoprenylated proteins, some of which are being developed as anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Stephen B Porter
- Department of Biochemistry and Molecular Biology, The University of Georgia, 120 Green Street, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wahlstrom AM, Cutts BA, Karlsson C, Andersson KME, Liu M, Sjogren AKM, Swolin B, Young SG, Bergo MO. Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease. Blood 2006; 109:763-8. [PMID: 16973961 PMCID: PMC1785091 DOI: 10.1182/blood-2006-05-024752] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RAS proteins undergo farnesylation of a carboxyl-terminal cysteine (the "C" of the carboxyl-terminal CaaX motif). After farnesylation, the 3 amino acids downstream from the farnesyl cysteine (the -aaX of the CaaX motif) are released by RAS-converting enzyme 1 (RCE1). We previously showed that inactivation of Rce1 in mouse fibroblasts mislocalizes RAS proteins away from the plasma membrane and inhibits RAS transformation. Therefore, we hypothesized that the inactivation of Rce1 might inhibit RAS transformation in vivo. To test this hypothesis, we used Cre/loxP recombination techniques to simultaneously inactivate Rce1 and activate a latent oncogenic K-RAS allele in hematopoietic cells in mice. Normally, activation of the oncogenic K-RAS allele in hematopoietic cells leads to rapidly progressing and lethal myeloproliferative disease. Contrary to our hypothesis, the inactivation of Rce1 actually increased peripheral leukocytosis, increased the release of immature hematopoietic cells into the circulation and the infiltration of cells into liver and spleen, and caused mice to die more rapidly. Moreover, in the absence of Rce1, splenocytes and bone marrow cells expressing oncogenic K-RAS yielded more and larger colonies when grown in methylcellulose. We conclude that the inactivation of Rce1 worsens the myeloproliferative disease caused by oncogenic K-RAS.
Collapse
Affiliation(s)
| | | | | | | | - Meng Liu
- Wallenberg Laboratory, Department of Medicine, and
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China
| | | | - Birgitta Swolin
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stephen G. Young
- Department of Internal Medicine, David Geffen School of Medicine, University of California–Los Angeles
| | - Martin O. Bergo
- Wallenberg Laboratory, Department of Medicine, and
- Correspondence: Martin O. Bergo,
Wallenberg Laboratory, Department of Medicine, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden; e-mail:
| |
Collapse
|
13
|
Plummer LJ, Hildebrandt ER, Porter SB, Rogers VA, McCracken J, Schmidt WK. Mutational analysis of the ras converting enzyme reveals a requirement for glutamate and histidine residues. J Biol Chem 2006; 281:4596-605. [PMID: 16361710 PMCID: PMC2937830 DOI: 10.1074/jbc.m506284200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ras converting enzyme (RCE) promotes a proteolytic activity that is required for the maturation of Ras, the yeast a-factor mating pheromone, and certain other proteins whose precursors bear a C-terminal CAAX tetrapeptide motif. Despite the physiological importance of RCE, the enzymatic mechanism of this protease remains undefined. In this study, we have evaluated the substrate specificity of RCE orthologs from yeast (Rce1p), worm, plant, and human and have determined the importance of conserved residues toward enzymatic activity. Our findings indicate that RCE orthologs have conserved substrate specificity, cleaving CVIA, CTLM, and certain other CAAX motifs, but not the CASQ motif, when these motifs are placed in the context of the yeast a-factor precursor. Our mutational studies of residues conserved between the orthologs indicate that an alanine substitution at His194 completely inactivates yeast Rce1p enzymatic activity, whereas a substitution at Glu156 or His248 results in marginal activity. We have also determined that residues Glu157, Tyr160, Phe190, and Asn252 impact the substrate selectivity of Rce1p. Computational methods predict that residues influencing Rce1p function are all near or within hydrophobic segments. Combined, our data indicate that yeast Rce1p function requires residues that are invariably conserved among an extended family of prokaryotic and eukaryotic enzymes and that these residues are likely to lie within or immediately adjacent to the transmembrane segments of this membrane-localized enzyme.
Collapse
Affiliation(s)
- Lisa J. Plummer
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| | - Stephen B. Porter
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| | - Victoria A. Rogers
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| | - Jay McCracken
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602
| |
Collapse
|
14
|
Hodges HB, Zhou M, Haldar S, Anderson JL, Thompson DH, Hrycyna CA. Inhibition of membrane-associated methyltransferases by a cholesterol-based metal chelator. Bioconjug Chem 2005; 16:490-3. [PMID: 15898712 DOI: 10.1021/bc050027d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have designed, synthesized, and characterized a metal chelating compound that is based on the structure of cholesterol and contains the high affinity metal chelating group, lysine nitrilotriacetic acid (Lys-NTA). Using the enzyme isoprenylcysteine carboxylmethyltransferase (Icmt) from yeast as a model integral membrane metalloenzyme, we find that this agent potently inhibits Icmt activity with an IC(50) value between 35 and 75 microM, which is at least 40 times more potent than the best known Icmt metal chelating inhibitor, Zincon. We propose that the rigid hydrophobic cholesterol moiety promotes partitioning into the membrane, enabling the metal-binding NTA group(s) to inactivate the enzyme by metal chelation. Because this compound is based on a naturally occurring membrane lipid and appears to chelate metals buried deeply within water insoluble environments, this agent may also be useful as a general tool for identifying previously unappreciated metal dependencies of other classes of membrane proteins.
Collapse
Affiliation(s)
- Heather B Hodges
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
15
|
Cesario A, Catassi A, Festi L, Imperatori A, Pericelli A, Galetta D, Margaritora S, Porziella V, Cardaci V, Granone P, Dominioni L, Russo P. Farnesyltransferase inhibitors and human malignant pleural mesothelioma: a first-step comparative translational study. Clin Cancer Res 2005; 11:2026-37. [PMID: 15756029 DOI: 10.1158/1078-0432.ccr-04-1450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is known that the potential clinical use of farnesyltransferase inhibitors (FTI) could be expanded to include cancers harboring activated receptor tyrosine kinases. Approximately 70% of malignant pleural mesotheliomas (MPM) overexpress epidermal growth factor receptors (EGFR) and a subset express both EGFR and transforming growth factor alpha (TGF-alpha), suggesting an autocrine role for EGFR in MPM. We checked on MPM cells (10 human cell lines, 11 primary cultures obtained by human biopsies, and 7 short-term normal mesothelial cell cultures) concerning the following: (a) the relative overexpression of EGFR (Western blotting, flow cytometry, immunohistochemistry), (b) the relative expression of EGFR ligands (EGF, amphiregulin, TGF-alpha, ELISA), (c) the relative increase of the activated form of Ras (Ras-bound GTP) after EGF stimulation (Ras activation assay), (d) the efficacy of five different FTIs (HDJ2 prenylation, cell cytotoxicity, and apoptosis using ApopTag and gel ladder). EGFR was overexpressed in MPM cells compared with normal pleural mesothelial cells in equivalent levels as in non-small cell lung cancer cells A459. MPM cells constitutively expressed EGFR ligands; however, Ras activation was attenuated at high EGF concentrations (100 ng/mL). Growth of MPM cells was substantially not affected by treatment with different FTIs (SCH66336, BMS-214662, R115777, RPR-115135, and Manumycin). Among these, BMS-214662 was the only one moderately active. BMS-214662 triggered apoptosis in a small fraction of cells (not higher than 30%) that was paralleled by a slight decrease in the levels of TGF-alpha secreted by treated MPM cells. Our data highlighted the concept that the same signaling pathway can be regulated in different ways and these regulations can differ between different cells of different origin.
Collapse
Affiliation(s)
- Alfredo Cesario
- Department of Surgical Science, Division of General Thoracic Surgery, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kramer K, Harrington EO, Lu Q, Bellas R, Newton J, Sheahan KL, Rounds S. Isoprenylcysteine carboxyl methyltransferase activity modulates endothelial cell apoptosis. Mol Biol Cell 2003; 14:848-57. [PMID: 12631708 PMCID: PMC151564 DOI: 10.1091/mbc.e02-07-0390] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extracellular ATP, adenosine (Ado), and adenosine plus homocysteine (Ado/HC) cause apoptosis of cultured pulmonary artery endothelial cells through the enhanced formation of intracellular S-adenosylhomocysteine and disruption of focal adhesion complexes. Because an increased intracellular ratio of S-adenosylhomocysteine/S-adenosylmethionine favors inhibition of methylation, we hypothesized that Ado/HC might act by inhibition of isoprenylcysteine-O-carboxyl methyltransferase (ICMT). We found that N-acetyl-S-geranylgeranyl-L-cysteine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC), which inhibit ICMT by competing with endogenous substrates for methylation, caused apoptosis. Transient overexpression of ICMT inhibited apoptosis caused by Ado/HC, UV light exposure, or tumor necrosis factor-alpha. Because the small GTPase, Ras, is a substrate for ICMT and may modulate apoptosis, we also hypothesized that inhibition of ICMT with Ado/HC or AGGC might cause endothelial apoptosis by altering Ras activation. We found that ICMT inhibition decreased Ras methylation and activity and the activation of the downstream signaling molecules Akt, ERK-1, and ERK-2. Furthermore, overexpression of wild-type or dominant active H-Ras blocked Ado/HC-induced apoptosis. These findings suggest that inhibition of ICMT causes endothelial cell apoptosis by attenuation of Ras GTPase methylation and activation and its downstream antiapoptotic signaling pathway.
Collapse
Affiliation(s)
- Kristina Kramer
- Pulmonary Vascular Biology Laboratory, Providence Veterans Affairs Medical Center, Brown Medical School, Rhode Island 02908, USA
| | | | | | | | | | | | | |
Collapse
|