1
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
2
|
Natural and Synthetic Xanthone Derivatives Counteract Oxidative Stress via Nrf2 Modulation in Inflamed Human Macrophages. Int J Mol Sci 2022; 23:ijms232113319. [PMID: 36362104 PMCID: PMC9659273 DOI: 10.3390/ijms232113319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.
Collapse
|
3
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Ayesh BM. Alpha-mangostin attenuates the apoptotic pathway of abamectin in the fetal rats' brain by targeting pro-oxidant stimulus, catecholaminergic neurotransmitters, and transcriptional regulation of reelin and nestin. Drug Chem Toxicol 2022; 45:2496-2508. [PMID: 34338122 DOI: 10.1080/01480545.2021.1960856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abamectin, an avermectin member, can induce significant neurodegeneration symptoms in non-target organisms. However, its neurodevelopmental influences in mammals are unclear. Here, we focus on the antiapoptotic action of alpha-mangostin against the developmental neurotoxicity of abamectin with the possible involvement of reelin and nestin mRNA gene expression. Thirty-two pregnant rats were allocated to four groups (8 rats/group); control, alpha-mangostin (20 mg/kg/d), abamectin (0.5 mg/kg), and co-treated group (alpha-mangostin + abamectin). The animals have gavaged their doses during the gestation period. The fetotoxicity and many signs of growth retardation were observed in the abamectin-intoxicated rats. In comparison with the control group, abamectin prompted a significant elevation (p < 0.05) in the levels of malondialdehyde and nitric oxide, along with many symptoms of histopathological changes in the fetal cerebral cortex. However, the glutathione, dopamine, and serotonin concentrations together with the activities of glutathione-S-transferase, catalase, and superoxide dismutase were markedly decreased (p < 0.05) in the abamectin group. Moreover, abamectin remarkably upregulated (p < 0.05) the brain mRNA gene expression of reelin, nestin, and caspase-9 as well as the immunoreactivity of Bax and caspase-3 proteins in the cerebral cortex. It should be noted that alpha-mangostin mitigated the developmental neurotoxicity of abamectin to the normal range by recovering the levels of oxidant/antioxidant biomarkers, catecholamines; and apoptosis-related proteins with the involvement of reelin and nestin genes regulation. Those records revealed that the transcription regulation of reelin and nestin could be involved in the neuroprotective efficacy of alpha-mangostin, especially avermectin's developmental neurotoxicity.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| |
Collapse
|
4
|
The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent-A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11060717. [PMID: 35740124 PMCID: PMC9219858 DOI: 10.3390/antibiotics11060717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review aims to evaluate the antimicrobial activity of α-mangostin derived from Garcinia mangostana against different microbes. A literature search was performed using PubMed and Science Direct until March 2022. The research question was developed based on a PICO (Population, Intervention, Control and Outcomes) model. In this study, the population of interest was microbes, α-mangostin extracted from Garcinia mangostana was used as exposure while antibiotics were used as control, followed by the outcome which is determined by the antimicrobial activity of α-mangostin against studied microbes. Two reviewers independently performed the comprehensive literature search following the predetermined inclusion and exclusion criteria. A methodological quality assessment was carried out using a scoring protocol and the risk of bias in the studies was analyzed. Reward screening was performed among the selected articles to perform a meta-analysis based on the pre-determined criteria. Case groups where α-mangostin extracted from Garcinia mangostana was incorporated were compared to groups using different antibiotics or antiseptic agents (control) to evaluate their effectiveness. A total of 30 studies were included; they were heterogeneous in their study design and the risk of bias was moderate. The results showed a reduction in microbial counts after the incorporation of α-mangostin, which resulted in better disinfection and effectiveness against multiple microbes. Additionally, the meta-analysis result revealed no significant difference (p > 0.05) in their effectiveness when α-mangostin was compared to commercially available antibiotics. α-mangostin worked effectively against the tested microbes and was shown to have inhibitory effects on microbes with antibiotic resistance.
Collapse
|
5
|
So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet World 2022; 15:188-197. [PMID: 35369604 PMCID: PMC8924391 DOI: 10.14202/vetworld.2022.188-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dermatitis is a soft-tissue infection caused by Staphylococcus aureus. The recurrence of inflammatory skin is linked to clinical manifestations. Anti-inflammatory cytokines, which are essential for tissue damage, are released by bacteria through skin tissues. Oxidative stress causes inflammatory cells to necrotize and reduces their antioxidant profile, resulting in toxic damage to surrounding tissues. Although studies on the antibacterial effects of Thunbergia laurifolia Lindl., Curcuma longa L., Garcinia mangostana L., and Andrographis paniculata (Burm.). Bacterial infection of S. aureus have been conducted, most of these studies have been in vitro and were not related to the rabbit model. In addition, anti-inflammatory and antioxidant studies need to be evaluated. Thus, this study aims to compare the antibacterial, anti-inflammatory, and antioxidant properties of four local herbs with a standard antibiotic in S. aureus-induced rabbit dermatitis model. Materials and Methods: The skin of New Zealand white rabbits were artificially wounded using a sterile blade and then infected with S. aureus. The rabbits were divided into seven groups, each with three rabbits (Total 21 rabbits): The first group was the no infection group (no infection and no treatment with scarification), the second group was the no treatment group (S. aureus infection of the wound but no treatment), and the other five treated groups were T. laurifolia, C. longa, G. mangostana, A. paniculata, and bacitracin cream, all of which involved wound infection and treatments. The treatment lasted for 7 days. The antibacterial, anti-inflammatory, and antioxidant properties after treatment were measured. Results: The efficacy of T. laurifolia, C. longa, G. mangostana, and A. paniculata was similar to that of an antioxidant and free radical scavenging property. The bacterial infection process gradually reduced the activities of antioxidant systems (i.e., enzymatic levels and gene expressions) and total glutathione. However, the activities of the antioxidant system were steadily increased when treated with herbal extracts. During bacterial invasion of the skin, the concentration of thiobarbituric acid reactive molecules, the level of lipid peroxidation, and the expression of anti-inflammatory cytokine genes were increased. All these were decreased when herbal extracts were used to treat the lesion. Conclusion: It can be concluded that T. laurifolia, C. longa, G. mangostana, and A. paniculate extract have antibacterial, anti-inflammatory, and antioxidant properties and are effective antibacterial agents. G. mangostana is the most effective herbal extract for antidermatitis and has the potential to be used as an alternative topical treatment.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| |
Collapse
|
6
|
Markowicz J, Uram Ł, Wołowiec S, Rode W. Biotin Transport-Targeting Polysaccharide-Modified PAMAM G3 Dendrimer as System Delivering α-Mangostin into Cancer Cells and C. elegans Worms. Int J Mol Sci 2021; 22:ijms222312925. [PMID: 34884739 PMCID: PMC8657743 DOI: 10.3390/ijms222312925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/21/2023] Open
Abstract
The natural xanthone α-mangostin (αM) exhibits a wide range of pharmacological activities, including antineoplastic and anti-nematode properties, but low water solubility and poor selectivity of the drug prevent its potential clinical use. Therefore, the targeted third-generation poly(amidoamine) dendrimer (PAMAM G3) delivery system was proposed, based on hyperbranched polymer showing good solubility, high biocompatibility and low immunogenicity. A multifunctional nanocarrier was prepared by attaching αM to the surface amine groups of dendrimer via amide bond in the ratio 5 (G32B12gh5M) or 17 (G32B10gh17M) residues per one dendrimer molecule. Twelve or ten remaining amine groups were modified by conjugation with D-glucoheptono-1,4-lactone (gh) to block the amine groups, and two biotin (B) residues as targeting moieties. The biological activity of the obtained conjugates was studied in vitro on glioma U-118 MG and squamous cell carcinoma SCC-15 cancer cells compared to normal fibroblasts (BJ), and in vivo on a model organism Caenorhabditis elegans. Dendrimer vehicle G32B12gh at concentrations up to 20 µM showed no anti-proliferative effect against tested cell lines, with a feeble cytotoxicity of the highest concentration seen only with SCC-15 cells. The attachment of αM to the vehicle significantly increased cytotoxic effect of the drug, even by 4- and 25-fold for G32B12gh5M and G32B10gh17M, respectively. A stronger inhibition of cells viability and influence on other metabolic parameters (proliferation, adhesion, ATP level and Caspase-3/7 activity) was observed for G32B10gh17M than for G32B12gh5M. Both bioconjugates were internalized efficiently into the cells. Similarly, the attachment of αM to the dendrimer vehicle increased its toxicity for C. elegans. Thus, the proposed α-mangostin delivery system allowed the drug to be more effective in the dendrimer-bound as compared to free state against both cultured the cancer cells and model organism, suggesting that this treatment is promising for anticancer as well as anti-nematode chemotherapy.
Collapse
Affiliation(s)
- Joanna Markowicz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland;
- Correspondence: (J.M.); (W.R.)
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland;
| | - Stanisław Wołowiec
- Medical College, Rzeszow University, 1a Warzywna Str., 35-310 Rzeszow, Poland;
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
- Correspondence: (J.M.); (W.R.)
| |
Collapse
|
7
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
8
|
Chuang CJ, Wang M, Yeh JH, Chen TC, Tsou SC, Lee YJ, Chang YY, Lin HW. The Protective Effects of α-Mangostin Attenuate Sodium Iodate-Induced Cytotoxicity and Oxidative Injury via Mediating SIRT-3 Inactivation via the PI3K/AKT/PGC-1 α Pathway. Antioxidants (Basel) 2021; 10:1870. [PMID: 34942973 PMCID: PMC8698330 DOI: 10.3390/antiox10121870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
It is well known that age-related macular degeneration (AMD) is an irreversible neurodegenerative disease that can cause blindness in the elderly. Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is a part of the pathogenesis of AMD. In this study, we evaluated the protective effect and mechanisms of alpha-mangostin (α-mangostin, α-MG) against NaIO3-induced reactive oxygen species (ROS)-dependent toxicity, which activates apoptosis in vivo and in vitro. MTT assay and flow cytometry demonstrated that the pretreatment of ARPE-19 cells with α-MG (0, 3.75, 7.5, and 15 μM) significantly increased cell viability and reduced apoptosis from NaIO3-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cleaved PARP-1, cleaved caspase-3 protein expression, and enhancement of Bcl-2 protein. Furthermore, pre-incubation of ARPE-19 cells with α-MG markedly inhibited the intracellular ROS and extracellular H2O2 generation via blocking of the abnormal enzyme activities of superoxide dismutase (SOD), the downregulated levels of catalase (CAT), and the endogenous antioxidant, glutathione (GSH), which were regulated by decreasing PI3K-AKT-PGC-1α-STRT-3 signaling in ARPE-19 cells. In addition, our in vivo results indicated that α-MG improved retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear layer by inhibiting the expression of cleaved caspase-3 protein. Taken together, our results suggest that α-MG effectively protects human ARPE-19 cells from NaIO3-induced oxidative damage via antiapoptotic and antioxidant effects.
Collapse
Affiliation(s)
- Chen-Ju Chuang
- Emergency Department, Kaohsiung Municipal United Hospital, Kaohsiung 80457, Taiwan;
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-H.Y.); (T.-C.C.)
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-H.Y.); (T.-C.C.)
| | - Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Yi-Ju Lee
- Department of Pathology, Chung-Shan Medical University, Chung-Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Muniroh M, Nindita Y, Karlowee V, Purwoko Y, Rahmah ND, Widyowati R, Suryono S. Effect of Garcinia mangostana pericarp extract on glial NF-κB levels and expression of serum inflammation markers in an obese-type 2 diabetes mellitus animal model. Biomed Rep 2021; 15:63. [PMID: 34113445 PMCID: PMC8188163 DOI: 10.3892/br.2021.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related disease associated with cerebral inflammation and Alzheimer's disease. Garcinia mangostana pericarp (GMP) possesses antihyperglycemic, antidiabetic and anti-inflammatory effects. The aim of the present study was to evaluate the effect of GMP extract on cerebral inflammation in Wistar rats with T2DM by examining the expression levels of glial nuclear factor-κB (NF-κB), interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and superoxide dismutase (SOD). A total of 36 8-10-week-old male Wistar rats were randomly divided into six groups and provided a standard diet (normal control; C1), high-fat diet (HFD) with 200 g/kg GMP extract BW/day (GMP control; C2), HFD with streptozotocin-nicotinamide (diabetic control; C3), and HFD with 100 (M1), 200 (M2) or 400 g/kg body weight (BW)/day (M3) GMP extract for Wistar rats with diabetes. GMP extract was administered for 8 weeks after induction of T2DM was confirmed. Glial NF-κB activity was assessed by immunohistochemical staining, and by measuring IL-6 levels, TNF-α levels and SOD activity in the serum using ELISA. BW significantly increased following HFD treatment. After 7 weeks, the BW remained significantly higher compared with the normal control and GMP extract-treated groups, but decreased continuously in the T2DM groups. Glial NF-κB immunoreaction in the hippocampal region was significantly higher in the diabetic Wistar rats compared with the normal control Wistar rats, and 200 g/kg BW/day GMP significantly reduced its activity. The T2DM Wistar rats showed significantly higher expression levels of serum IL-6 and TNF-α and lower activity of SOD compared with the normal control Wistar rats. Meanwhile, rats in GMP groups M1, M2 and M3 exhibited significant reductions in the levels of IL-6 and TNF-α expression, and increases in SOD activity. GMP extract treatment effectively reduced hippocampal NF-κB, IL-6 and TNF-α levels and increased antioxidant SOD activity. These results suggest that GMP extract prevents cerebral inflammation in T2DM Wistar rats.
Collapse
Affiliation(s)
- Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Yora Nindita
- Department of Pharmacology and Therapeutics, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Vega Karlowee
- Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Yosef Purwoko
- Department of Physiology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia.,Department of Internal Medicine, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Nadya Diena Rahmah
- Department of Nutrition Science, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy Airlangga University, Surabaya, East Java 60115, Indonesia
| | - Suryono Suryono
- Department of Physics, Faculty of Science and Mathematics Diponegoro University, Semarang, Java 50275, Indonesia
| |
Collapse
|
10
|
Li RR, Zeng DY. The effects and mechanism of α-mangostin on chemosensitivity of gastric cancer cells. Kaohsiung J Med Sci 2021; 37:709-717. [PMID: 34003591 DOI: 10.1002/kjm2.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
This work investigated the effect of α-mangostin (α-M) on gastric cancer (GC) cell chemoresistance and its underlying mechanisms. Different concentrations of α-M and CDDP were applied to treat GC cells (SGC7901) and CDDP-resistant GC cells (SGC7901/CDDP) for 24 or 48 h. CCK-8 assays were used to measure the inhibitory effect of CDDP or α-M on SGC7901 and SGC7901/CDDP cells as well as the half-maximal inhibitory concentrations (IC50) of α-M for SGC7901 and SGC7901/CDDP cells. The optimal concentration and induction time of CDDP or α-M were determined. SGC7901/CDDP cells were treated with CDDP or/and α-M, where some of them were transfected with pcDNA3.1 or pcDNA3.1-EBI3. Cell proliferation and apoptosis were assessed as well as the levels of EBI3, STAT3, p-STAT3, autophagy-related proteins, and apoptosis-related proteins. CDDP inhibited SGC7901 cell proliferation in a dose-dependent manner. The IC50 of α-M for SGC7901 cells was 12.86 μM and that for SGC7901/CDDP cells was 13.69 μM. The optimal concentrations of CDDP and α-M for SGC7901/CDDP cells were 2 and 15 μM, respectively, and the optimal time was 48 h. The SGC7901/CDDP cells in the CDDP+/α-M+ group had elevated inhibition of proliferation and apoptosis rates. Western blot analysis revealed enhanced levels of LC3-II/I and Beclin1, reduced p62 level, decreased Bcl2 level, and increased levels of Bax and cleaved caspase-3/9. The EBI3/STAT3 pathway was implicated in the effect of α-M on SGC7901/CDDP cell development. α-M increases the chemosensitivity of GC cells by facilitating autophagy and inactivating the EBI3/STAT3 pathway.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yu Zeng
- Department of Medical Oncology-Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Nguyen PT, Nguyen MT, Bolhuis A. Inhibition of biofilm formation by alpha-mangostin loaded nanoparticles against Staphylococcus aureus. Saudi J Biol Sci 2021; 28:1615-1621. [PMID: 33732047 PMCID: PMC7938154 DOI: 10.1016/j.sjbs.2020.11.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the antibiofilm activity of alpha-mangostin (AMG) loaded nanoparticles (nanoAMG) against Staphylococcus aureus, including the methicillin-resistant strain MRSA252. The results indicated that treatment with 24 μmol/L nanoAMG inhibited the formation of biofilm biomass by 53-62%, compared to 40-44% for free AMG (p < 0.05). At 48 μmol/L, biofilms in all nanoAMG treated samples were nearly fully disrupted for the two tested strains, MRSA252 and the methicillin-sensitive strain NCTC6571. That concentration resulted in killing of biofilm cells. A lower concentration of 12 µmol/L nanoAMG inhibited initial adherence of the two bacterial strains by > 50%. In contrast, activity of nanoAMG was limited on preformed mature biofilms, which at a concentration of 48 µmol/L were reduced only by 27% and 22% for NCTC6571 and MRSA252, respectively. The effects of AMG or nanoAMG on the expression of biofilm-related genes showed some noticeable differences between the two strains. For instance, the expression level of ebpS was downregulated in MRSA252 and upregulated in NCTC6571 when those strains were treated with either AMG or nanoAMG. In contrast, the expression of fnbB was down regulated in NCTC6571, while it was up-regulated in the MRSA252. The expression of other biofilm-related genes (icaC, clfB and fnbA) was down regulated in both strains. In conclusion, our results suggest that AMG coated nanoparticles had enhanced biological activity as compared to free AMG, indicating that nanoAMG could be a new and promising inhibitor of biofilm formation to tackle S. aureus, including strains that are resistant to multiple antibiotics.
Collapse
Affiliation(s)
- Phuong T.M. Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
- Corresponding authors at: Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Minh T.H. Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Corresponding authors at: Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
12
|
Phytochemicals and Biological Activities of Garcinia morella (Gaertn.) Desr.: A Review. Molecules 2020; 25:molecules25235690. [PMID: 33276654 PMCID: PMC7730552 DOI: 10.3390/molecules25235690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023] Open
Abstract
Garcinia morella (Gaertn.) Desr. is an evergreen tree that yields edible fruits, oil, and resin. It is a source of “gamboge”, a gum/resin that has a wide range of uses. The fruits, leaves, and seeds of this tree are rich in bioactive compounds, including xanthones, flavonoids, phenolic acids, organic acids, and terpenoids. Evidence from different studies has demonstrated the antioxidant, antifungal, antiviral, hepatoprotective, anticancer, anti-inflammatory, antibacterial, and larvicidal activities of the fruit, leaf, and seed extracts of G. morella. This review summarizes the information on the phytochemicals of G. morella and the biological activities of its active constituents.
Collapse
|
13
|
Ye H, Wang Q, Zhu F, Feng G, Yan C, Zhang J. Antifungal Activity of Alpha-Mangostin against Colletotrichum gloeosporioides In Vitro and In Vivo. Molecules 2020; 25:molecules25225335. [PMID: 33207599 PMCID: PMC7696833 DOI: 10.3390/molecules25225335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated alpha-mangostin (α-mangostin, α-MG), a xanthone natural product extracted from the pericarp of mangosteen (Garcinia mangostana), for its antifungal activities and possible mechanism against Colletotrichum gloeosporioides, which causes mango anthracnose. The results demonstrated that α-MG had a relatively high in vitro inhibitory activity against C. gloeosporioides among 20 plant pathogenic fungi. The median effective concentration (EC50) values of α-MG against mycelial growth were nearly 10 times higher than those of spore germination inhibition for both strains of C. gloeosporioides, the carbendazim-sensitive (CBD-s) and carbendazim-resistant (CBD-r). The results suggested that α-MG exhibited a better inhibitory effect on spore germination than on the mycelial growth of C. gloeosporioides. Further investigation indicated that the protective effect could be superior to the therapeutic effect for mango leaves for scab development. The morphological observations of mycelium showed that α-MG caused the accumulation of dense bodies. Ultrastructural observation further revealed that α-MG caused a decrease in the quantity and shape of the swelling of mitochondria in the mycelium cells of C. gloeosporioides. In addition, bioassays disclosed that the inhibitory activity of α-MG on spore germination was reduced by adding exogenous adenosine triphosphate (ATP). These results suggested that the mode of action of α-MG could be involved in the destruction of mitochondrial energy metabolism. The current study supports α-MG as a natural antifungal agent in crop protection.
Collapse
Affiliation(s)
- Huochun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571101, China
| | - Qin Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Fadi Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571101, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571101, China
- Correspondence: (G.F.); (J.Z.)
| | - Chao Yan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571101, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China; (H.Y.); (Q.W.); (F.Z.); (C.Y.)
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571101, China
- Correspondence: (G.F.); (J.Z.)
| |
Collapse
|
14
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
15
|
Kuruppu KASS, Perera KMKG, Chamara AMR, Thiripuranathar G. Flower shaped ZnO—NPs; phytofabrication, photocatalytic, fluorescence quenching, and photoluminescence activities. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/aba862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Phytofabrication of Zinc Oxide nanoparticles (ZnO–NPs) through Nephelium lappaceum L. and Garcinia mangostana L. plants’ wastes were achieved as an environmentally friendly method of synthesizing nanoparticles. Biogenic ZnO–NPs were characterized by Ultra Violet Visible (UV–vis) spectrophotometry, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy Dispersive Energy (EDX ), and Fourier Transform Infrared spectroscopy (FTIR). UV- Visible absorption of ZnO–NPs indicated a characteristic absorption band at 362–368 nm region. The synthesized nanoparticles were flower in shape, as shown by the SEM images, and they were further elucidated by the TEM images. ZnO-NP synthesized via Rambutan Peel Extract (RPE), Rambutan Seed Extract (RSE), Mangosteen Peel Extract (MPE) and Mangosteen Seed Extract (MSE) showed the average particle size of 29 nm–184 nm, 86 nm–260 nm, 92 nm–247 nm, and 233 nm–334 nm respectively. FTIR spectra demonstrated peaks at 3269–3500 cm−1, 2308–2361 cm−1, 2103–2110 cm−1 and 1630–1640 cm−1, 586–632 cm−1 for the plant extracts, whereas an additional peak appeared within the range of 458–499 cm−1 in ZnO–NPs spectra. The photocatalytic activity of the synthesized ZnO–NPs was measured by the degradation of Methylene Blue under sunlight. The highest degradation of Methylene Blue dye was detected in ZnO—NPs synthesized using the seed extract of Nephelium lappaceum L., where a Half-life of 78 min and 97% degradation efficiency at 150 min time frame was observed. The ZnO–NPs were identified to possess fluorescence quenching ability of Rhodamine B. The highest quenching ability was recorded in ZnO–NPs synthesized via Garcinia mangostana L. seed. The Photoluminescence study showed that the intensity of spectral lines of biogenic ZnO–NPs were higher compared with the chemically synthesized ZnO–NPs.
Collapse
|
16
|
Hotarat W, Nutho B, Wolschann P, Rungrotmongkol T, Hannongbua S. Delivery of Alpha-Mangostin Using Cyclodextrins through a Biological Membrane: Molecular Dynamics Simulation. Molecules 2020; 25:molecules25112532. [PMID: 32485931 PMCID: PMC7321106 DOI: 10.3390/molecules25112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
α-Mangostin (MGS) exhibits various pharmacological activities, including antioxidant, anticancer, antibacterial, and anti-inflammatory properties. However, its low water solubility is the major obstacle for its use in pharmaceutical applications. To increase the water solubility of MGS, complex formation with beta-cyclodextrins (βCDs), particularly with the native βCD and/or its derivative 2,6-dimethyl-β-CD (DMβCD) is a promising technique. Although there have been several reports on the adsorption of βCDs on the lipid bilayer, the release of the MGS/βCDs inclusion complex through the biological membrane remains unclear. In this present study, the release the MGS from the two different βCDs (βCD and DMβCD) across the lipid bilayer was investigated. Firstly, the adsorption of the free MGS, free βCDs, and inclusion complex formation was studied by conventional molecular dynamics simulation. The MGS in complex with those two βCDs was able to spontaneously release free MGS into the inner membrane. However, both MGS and DMβCD molecules potentially permeated into the deeper region of the interior membrane, whereas βCD only adsorbed at the outer membrane surface. The interaction between secondary rim of βCD and the 1-palmitoeyl-2-oleoyl-glycero-3-phosphocholine (POPC) phosphate groups showed the highest number of hydrogen bonds (up to 14) corresponding to the favorable location of βCD on the POPC membrane. Additionally, the findings suggested that electrostatic energy was the main driving force for βCD adsorption on the POPC membrane, while van der Waals interactions played a predominant role in DMβCD adsorption. The release profile of MGS from the βCDs pocket across the lipid bilayer exhibited two energy minima along the reaction coordinate associated with the permeation of the MGS molecule into the deeper region of the POPC membrane.
Collapse
Affiliation(s)
- Wiparat Hotarat
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (W.H.); (B.N.)
| | - Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (W.H.); (B.N.)
| | - Peter Wolschann
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria;
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66(0)2218-5418 (T.R.); +66(0)2218-7603 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (W.H.); (B.N.)
- Correspondence: (T.R.); (S.H.); Tel.: +66(0)2218-5418 (T.R.); +66(0)2218-7603 (S.H.)
| |
Collapse
|
17
|
Arozal W, Louisa M, Soetikno V. Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Front Cardiovasc Med 2020; 7:82. [PMID: 32435657 PMCID: PMC7218133 DOI: 10.3389/fcvm.2020.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Increased prevalence of metabolic syndrome (MetS) in the world influences quality of health in all respective countries, including Indonesia. Data from Indonesian Family Life Survey reported in 2019 showed that the prevalence of MetS in Indonesia currently is 21.66%, estimated with the provincial incidence ranging up to 50%; additionally, the most common components of MetS discovered in Indonesia were poor high-density lipoprotein (HDL) cholesterol and hypertension. Management treatment of MetS involves a combination of lifestyle changes and pharmacological interventions to decrease cerebrovascular disease. Various natural substances have been shown to govern any cardiovascular or metabolic disorders through different mechanisms, such as triggering anti-inflammation, lipid profile correction, sensitization of insulin reception, or blood glucose control. In Indonesia, the utilization of natural compounds is part of the nation's culture. The community widely uses them; even though in general, their effectiveness and safety have not been thoroughly assessed by rigorous clinical trials. Scientific evidence suggested that cinnamon, mangosteen, and curcumin, as well as their derived components possess a broad spectrum of pharmacological activity. In this review, an enormous potential of cinnamon, mangosteen, and curcumin, which originated and are commonly used in Indonesia, could be treated against MetS, such as diabetes, hyperlipidemia, hypertension, and obesity. The findings suggested that cinnamon, mangosteen, curcumin and their derivatives may reflect areas of promise in the management of MetS.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Zhang H, Tan YP, Zhao L, Wang L, Fu NJ, Zheng SP, Shen XF. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis 2020; 11:63. [PMID: 31980595 PMCID: PMC6981176 DOI: 10.1038/s41419-020-2227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide. The dietary xanthone α-mangostin (α-MGT) exhibits potent anti-tumor effects in vitro and in vivo. However, the anti-HCC effects of α-MGT and their underlying mechanisms are still vague. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is involved in the progression of HCC. We therefore investigated whether α-MGT inhibited the activation of STAT3 and thereby exhibits its anti-HCC effects. In this study, we found that α-MGT significantly suppressed cell proliferation, induced cell cycle arrest, and triggered apoptosis in HCC cells, including HepG2, SK-Hep-1, Huh7, and SMMC-7721 cells in vitro, as well as inhibiting tumor growth in nude mice bearing HepG2 or SK-Hep-1 xenografts. Furthermore, α-MGT potently inhibited the constitutive and inducible activation of STAT3 in HCC cells. In addition, α-MGT also suppressed IL-6-induced dimerization and nuclear translocation of STAT3, which led to inhibition of the expression of STAT3-regulated genes at both mRNA and protein levels. Mechanistically, α-MGT exhibited effective inhibition of the activation of STAT3’s upstream kinases, including JAK2, Src, ERK, and Akt. Importantly, α-MGT increased the protein level of Src homology region 2 domain-containing phosphatase-1 (SHP1), which is a key negative regulator of the STAT3 signaling pathway. Furthermore, α-MGT enhanced the stabilization of SHP1 by inhibiting its degradation mediated by the ubiquitin–proteasome pathway. Knockdown of SHP1 using siRNA obviously prevented the α-MGT-mediated inhibition of the activation of STAT3 and proliferation of HCC cells. In summary, α-MGT exhibited a potent anti-HCC effect by blocking the STAT3 signaling pathway via the suppression of the degradation of SHP1 induced by the ubiquitin–proteasome pathway. These findings also suggested the potential of dietary derived α-MGT in HCC therapy.
Collapse
Affiliation(s)
- Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ping Tan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nai-Jie Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Ping Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
20
|
Muhamad Adyab NS, Rahmat A, Abdul Kadir NAA, Jaafar H, Shukri R, Ramli NS. Mangosteen (Garcinia mangostana) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats. Altern Ther Health Med 2019; 19:344. [PMID: 31791316 PMCID: PMC6889675 DOI: 10.1186/s12906-019-2764-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/20/2019] [Indexed: 01/13/2023]
Abstract
Background Mangosteen is a native fruit from Southeast Asia. It is rich in phenolic compounds such as xanthones, anthocyanins and phenolic acids. Mangosteen pericarp extract showed inhibitory activity towards pancreatic lipase and may have potential use for obesity treatment. However, there is limited study on the beneficial effects of mangosteen flesh against obesity. This study aimed to investigate the effects of Garcinia mangostana flesh (GMF) on biochemical and morphological changes in the liver and kidney of high-fat diet-induced obese rats. Methods Forty healthy Sprague-Dawley rats were randomised into five groups (n = 8) with four groups were fed with high-fat diet (HFD) for 10 weeks and a control group was fed with rat chow diet. Supplementation with GMF in obese rats was continued for 7 weeks starting from week 10th after the initiation of HFD at different doses (200 mg/kg, 400 mg/kg and 600 mg/kg). The positive and negative control rats were given distilled water via oral gavage. Plasma lipid profile, antioxidant enzymes and pro-inflammatory markers were determined using commercial kits. Liver and kidney structure were defined by histology. Results The rats fed with HFD for 10 weeks increased plasma LDL-cholesterol, reduced plasma glutathione peroxidase level and had significantly higher body weight compared to normal control rats (p < 0.05). Obese rats also showed elevated level of TNF-α and IL-6 after 17 weeks of HFD. Supplementation with GMF for 7 weeks in obese rats reduced their body weight, improved lipid profile, increased total antioxidant capacity and glutathione peroxidase level and lowered plasma pro-inflammatory markers (TNF-α and IL-6) (p < 0.05). In addition, GMF supplementation attenuated the abnormalities of the liver and kidney tissue caused by high fat diet. Conclusion Taken together, the findings suggest that supplementation of Garcinia mangostana flesh may help in reducing body weight and has the potential to ameliorate the biochemical changes of the high fat diet-induced obesity in rats. Further studies on pharmacodynamic and pharmacokinetic are required before the results are translated to human.
Collapse
|
21
|
Krishnamachary B, Subramaniam D, Dandawate P, Ponnurangam S, Srinivasan P, Ramamoorthy P, Umar S, Thomas SM, Dhar A, Septer S, Weir SJ, Attard T, Anant S. Targeting transcription factor TCF4 by γ-Mangostin, a natural xanthone. Oncotarget 2019; 10:5576-5591. [PMID: 31608135 PMCID: PMC6771460 DOI: 10.18632/oncotarget.27159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 01/29/2023] Open
Abstract
Given that colon cancer is the third most common cancer in incidence and cause of death in the United States, and current treatment modalities are insufficient, there is a need to develop novel agents. Towards this, here we focus on γ-Mangostin, a bioactive compound present in the Mangosteen (Garcinia mangostana) fruit. γ-Mangostin suppressed proliferation and colony formation, and induced cell cycle arrest and apoptosis of colon cancer cell lines. Further, γ-Mangostin inhibited colonosphere formation. Molecular docking and CETSA (Cellular thermal shift assay) binding assays demonstrated that γ-Mangostin interacts with transcription factor TCF4 (T-Cell Factor 4) at the β-catenin binding domain with the binding energy of -5.5 Kcal/mol. Moreover, γ-Mangostin treatment decreased TCF4 expression and reduced TCF reporter activity. The compound also suppressed the expression of Wnt signaling target proteins cyclin D1 and c-Myc, and stem cell markers such as LGR5, DCLK1 and CD44. To determine the effect of γ-Mangostin on tumor growth in vivo, we administered nude mice harboring HCT116 tumor xenografts with 5 mg/Kg of γ-Mangostin intraperitoneally for 21 days. γ-Mangostin treatment significantly suppressed tumor growth, with notably lowered tumor volume and weight. In addition, western blot analysis revealed a significant decrease in the expression of TCF4 and its downstream targets such as cyclin D1 and c-Myc. Together, these data suggest that γ-Mangostin inhibits colon cancer growth through targeting TCF4. γ-Mangostin may be a potential therapeutic agent for colon cancer.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sivapriya Ponnurangam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Attard
- Department of Pediatrics, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, "The Queen of Fruits," and new advances in postharvest and in food and engineering applications: A review. J Adv Res 2019; 20:61-70. [PMID: 31210985 PMCID: PMC6562293 DOI: 10.1016/j.jare.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
This review highlights recent advances of mangosteen research in the postharvest, food and engineering fields. In postharvest fields, phytohormones, metabolites, and pest/disease management are described. Mangosteen has also been used in various food products and for animal feed supplementation. In engineering, mangosteen extract is useful in solar cells, carbon dots and advanced materials. Mangosteen-based products may benefit consumers and the engineering and biomedical industries.
One of the most prolific plants utilized in various applications is mangosteen (Garcinia mangostana L.). Rich in potent bioactive compounds, such as xanthones, mangosteen is known to possess pharmacologically important anti-inflammatory and anti-tumor properties. However, most previous reviews have only discussed the application of mangosteen in medicinal areas, yet more recent studies have diverged and valorized its usage in other scientific fields. In this review, the utilization of this exotic fruit in postharvest biology (phytohormone roles, metabolite profiling, bioactive compounds, isolation method optimization, chemical contaminant identification, and management of pests and fruit disorders), food science (food products, animal feed supplementation, and food shelf-life determination), and engineering fields (fabric and solar cell dyes, carbon dots, activated carbon, and biomedical advanced materials) is presented in detail. Research papers published from 2016 onward were selected and reviewed to show the recent research trends in these areas. In conclusion, mangosteen has been utilized for various purposes, ranging from usage in industrially important products to applications in advanced technologies and biomedical innovation.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Faridda Hannim Ahmad-Hashim
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Sharifah Nabihah Syed Jaafar
- Bioresource and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
The Protective Effect of Alpha-Mangostin against Cisplatin-Induced Cell Death in LLC-PK1 Cells is Associated to Mitochondrial Function Preservation. Antioxidants (Basel) 2019; 8:antiox8050133. [PMID: 31096625 PMCID: PMC6562511 DOI: 10.3390/antiox8050133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022] Open
Abstract
Cis-dichlorodiammineplatinum II (CDDP) is a chemotherapeutic agent that induces nephrotoxicity by different mechanisms, including oxidative stress, mitochondrial dysfunction, autophagy, and endoplasmic reticulum stress. This study aimed to evaluate if the protective effects of the antioxidant alpha-mangostin (αM) in CDDP-induced damage in proximal tubule Lilly laboratory culture porcine kidney (LLC-PK1) cells, are related to mitochondrial function preservation. It was found that αM co-incubation prevented CDDP-induced cell death. Furthermore, αM prevented the CDDP-induced decrease in cell respiratory states, in the maximum capacity of the electron transfer system (E) and in the respiration associated to oxidative phosphorylation (OXPHOS). CDDP also decreased the protein levels of voltage dependence anion channel (VDAC) and mitochondrial complex subunits, which together with the reduction in E, the mitofusin 2 decrease and the mitochondrial network fragmentation observed by MitoTracker Green, suggest the mitochondrial morphology alteration and the decrease in mitochondrial mass induced by CDDP. CDDP also induced the reduction in mitochondrial biogenesis observed by transcription factor A, mitochondria (TFAM) decreased protein-level and the increase in mitophagy. All these changes were prevented by αM. Taken together, our results imply that αM’s protective effects in CDDP-induced toxicity in LLC-PK1 cells are associated to mitochondrial function preservation.
Collapse
|
24
|
Inhibition of Oxidative Neurotoxicity and Scopolamine-Induced Memory Impairment by γ-Mangostin: In Vitro and In Vivo Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3640753. [PMID: 31019651 PMCID: PMC6451816 DOI: 10.1155/2019/3640753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H2O2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H2O2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited β-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer's disease.
Collapse
|
25
|
Xu N, Deng W, He G, Gan X, Gao S, Chen Y, Gao Y, Xu K, Qi J, Lin H, Shen L, Li X, Hu Z. Alpha- and gamma-mangostins exhibit anti-acne activities via multiple mechanisms. Immunopharmacol Immunotoxicol 2018; 40:415-422. [DOI: 10.1080/08923973.2018.1519831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nuo Xu
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | | | - Gaiying He
- LB Cosmeceutical Technology Co. Ltd, Shanghai, China
| | | | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Ke Xu
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Junmei Qi
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Haojie Lin
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Li Shen
- LB Cosmeceutical Technology Co. Ltd, Shanghai, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
26
|
Yan XT, Sun YS, Ren S, Zhao LC, Liu WC, Chen C, Wang Z, Li W. Dietary α-Mangostin Provides Protective Effects against Acetaminophen-Induced Hepatotoxicity in Mice via Akt/mTOR-Mediated Inhibition of Autophagy and Apoptosis. Int J Mol Sci 2018; 19:ijms19051335. [PMID: 29723988 PMCID: PMC5983768 DOI: 10.3390/ijms19051335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen overdose-induced hepatotoxicity is the most common cause of acute liver failure in many countries. Previously, alpha-mangostin (α-MG) has been confirmed to exert protective effects on a variety of liver injuries, but the protective effect on acetaminophen-induced acute liver injury (ALI) remains largely unknown. This work investigated the regulatory effect and underlying cellular mechanisms of α-MG action to attenuate acetaminophen-induced hepatotoxicity in mice. The increased serum aminotransferase levels and glutathione (GSH) content and reduced malondialdehyde (MDA) demonstrated the protective effect of α-MG against acetaminophen-induced hepatotoxicity. In addition, α-MG pretreatment inhibited increases in tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) caused by exposure of mice to acetaminophen. In liver tissues, α-MG inhibited the protein expression of autophagy-related microtubule-associated protein light chain 3 (LC3) and BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3). Western blotting analysis of liver tissues also proved evidence that α-MG partially inhibited the activation of apoptotic signaling pathways via increasing the expression of Bcl-2 and decreasing Bax and cleaved caspase 3 proteins. In addition, α-MG could in part downregulate the increase in p62 level and upregulate the decrease in p-mTOR, p-AKT and LC3 II /LC3 I ratio in autophagy signaling pathways in the mouse liver. Taken together, our findings proved novel perspectives that detoxification effect of α-MG on acetaminophen-induced ALI might be due to the alterations in Akt/mTOR pathway in the liver.
Collapse
Affiliation(s)
- Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yin-Shi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
- Institute of Special Wild Economic Animals and Plant, CAAS, Changchun 132109, China.
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China.
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia.
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
27
|
Chen G, Li Y, Wang W, Deng L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: a review. Expert Opin Ther Pat 2018; 28:415-427. [PMID: 29558225 DOI: 10.1080/13543776.2018.1455829] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION α-Mangostin (α-MG) is the most representative xanthone isolated from the pericarp of mangosteen, possessing extensive biological activities and pharmacological properties, considered as an antineoplastic agent, antioxidant, anti-proliferation and induces apoptosis. AREAS COVERED The bioactivity and pharmacological properties of α-MG are being actively investigated by various industrial and academic institutions. The bioactivities of α-MG have been summarized in several previous reviews, which were worthy of high compliment. However, recently, many new literatures about the bioactivities of α-MG have been further reported from 2016 to 2017. Herein, the activities of α-MG are supplemented and summarized in this text. EXPERT OPINION As previously said, α-MG possesses good bioactivities pharmacological properties. More recently, it found that α-MG has the effect of maintaining cardiovascular system and gastrointestinal health and controlling free radical oxidation. Furthermore, α-MG has more applications in cosmetics, with the effects of anti-aging, anti-wrinkle, acne treatment, maintenance of skin lubrication. The application of α-MG in treating rheumatoid arthritis has been disclosed and the MG-loaded self-micro emulsion (MG-SME) was designed to improve its pharmacokinetic deficiencies. As mentioned above, α-MG can be a promising drug, also worthy of developing, and further research is crucial for the future application of α-MG.
Collapse
Affiliation(s)
- Guoqing Chen
- a Department of Chemistry and Chemical Engineering , Shaoxing University , Shaoxing , P.R.China
| | - Yong Li
- a Department of Chemistry and Chemical Engineering , Shaoxing University , Shaoxing , P.R.China
| | - Wei Wang
- b Shaoxing University Yuanpei College , Shaoxing University , Shaoxing , P.R.China
| | - Liping Deng
- a Department of Chemistry and Chemical Engineering , Shaoxing University , Shaoxing , P.R.China.,b Shaoxing University Yuanpei College , Shaoxing University , Shaoxing , P.R.China
| |
Collapse
|
28
|
Benatrehina PA, Pan L, Naman CB, Li J, Kinghorn AD. Usage, biological activity, and safety of selected botanical dietary supplements consumed in the United States. J Tradit Complement Med 2018; 8:267-277. [PMID: 29736381 PMCID: PMC5934707 DOI: 10.1016/j.jtcme.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/06/2018] [Indexed: 12/29/2022] Open
Abstract
In view of the continuous growth of the botanical dietary supplement industry and the increased popularity of lesser known or exotic botanicals, recent findings are described on the phytochemical composition and biological activities of five selected fruits consumed in the United States, namely, açaí, noni, mangosteen, black chokeberry, and maqui berry. A review of the ethnomedicinal uses of these plants has revealed some similarities ranging from wound-healing to the treatment of fever and infectious diseases. Laboratory studies on açaí have shown both its antioxidant and anti-inflammatory activities in vitro, and more importantly, its neuroprotective properties in animals. Anthraquinones and iridoid glucosides isolated from noni fruit induce the phase II enzyme quinone reductase (QR), and noni fruit juice exhibited antitumor and antidiabetic activities in certain animal models. Antitumorigenic effects of mangosteen in animal xenograft models of human cancers have been attributed to its xanthone content, and pure α-mangostin was shown to display antineoplastic activity in mice despite a reported low oral bioavailability. Work on the less extensively investigated black chokeberry and maqui berry has focused on recent isolation studies and has resulted in the identification of bioactive secondary metabolites with QR-inducing and hydroxyl-radical scavenging properties. On the basis of the safety studies and toxicity case reports described herein, these fruits may be generally considered as safe. However, cases of adulteration found in a commercialized açaí product and some conflicting results from mangosteen safety studies warrant further investigation on the safety of these marketed botanical dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|