1
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Sun H, Shao Y. Transcriptome analysis reveals key pathways that vary in patients with paroxysmal and persistent atrial fibrillation. Exp Ther Med 2021; 21:571. [PMID: 33850543 PMCID: PMC8027719 DOI: 10.3892/etm.2021.10003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
The present study evaluated mRNA and long non-coding RNA (lncRNA) expression profiles and the pathways involved in paroxysmal atrial fibrillation (ParoAF) and persistent atrial fibrillation (PersAF). Nine left atrial appendage (LAA) tissues collected from the hearts of patients with AF (patients with ParoAF=3; and patients with PersAF=3) and healthy donors (n=3) were analyzed by RNA sequencing. Differentially expressed (DE) mRNAs and lncRNAs were identified by |Log2 fold change|>2 and P<0.05. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway enrichment, protein-protein interaction network and mRNA-lncRNA interaction network analyses of DE mRNA and mRNA at the upstream/downstream of DE lncRNA were conducted. A total of 285 and 275 DE mRNAs, 575 and 583 DE lncRNAs were detected in ParoAF and PersAF samples compared with controls, respectively. PI3K/Akt and transforming growth factor-β signaling pathways were significantly enriched in the ParoAF_Control and the calcium signaling pathway was significantly enriched in the PersAF_Control. Cis and trans analyses revealed some important interactions in DE mRNAs and lncRNA, including an interaction of GPC-AS2 with dopachrome tautomerase, and phosphodiesterase 4D and cAMP-specific with XLOC_110310 and XLOC_137634. Overall, the present study provides a molecular basis for future clinical studies on ParoAF and PersAF.
Collapse
Affiliation(s)
- Haoliang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
3
|
Integrative analysis reveals essential mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) in paroxysmal and persistent atrial fibrillation patients. Anatol J Cardiol 2020; 25:414-428. [PMID: 34100729 DOI: 10.14744/anatoljcardiol.2020.57295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the functions of mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) in paroxysmal and persistent atrial fibrillation (AF) patients. METHODS A total of 9 left atrial appendage (LAA) tissues were collected from patients with AF (ParoAF patients = 3 and PersAF patients = 3) and donors (n=3). Genes and circRNAs were identified by per kilobase per million reads (RPKM) and number of circular reads/number of mapped reads/read length (SRPBM), respectively. Differentially expressed mRNAs (DE mRNAs), lncRNAs (DE lncRNAs), and circRNAs (DE circRNAs) were identified by | log2 (Fold Change) | ≥ 2 and p-value < 0.05. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Protein-protein, mRNA-lncRNA, and circRNA-miRNA interaction networks were constructed. In addition, logistic analysis was conducted among AF and circRNAs. RESULTS A total of 285 (116 up-regulated and 169 down-regulated) and 275 (110 up-regulated and 165 down-regulated) DE mRNAs, 575 (276 up-regulated and 299 down-regulated) and 583 (330 up-regulated and 253 down-regulated) DE lncRNAs, and 83 (48 up-regulated and 35 down-regulated) and 99 (58 up-regulated and 41 down-regulated) circRNAs were detected in ParoAF and PersAF, respectively, as compared with control. MAPK signal pathway as well as voltage-dependent, L type, and alpha 1C subunit calcium channel (CACNA1C) might participate in AF occurrence by preventing atrial parasympathetic remodeling. Collagen type I alpha 1 (COL1A1) and COL1A2 mostly participated in the enriched GO and KEGG terms and connected with most of the DE mRNAs. The expression of chr10: 69902697|69948883 was a protective factor against PersAF after adjusting for age (p=0.022, 95% CI: 0.003-0.634). CONCLUSION We found that some mRNAs, lncRNAs, circRNAs, and pathways play essential roles in AF pathogenesis and development. Moreover, one protective factor against PersAF was detected.
Collapse
|
4
|
Effects of febuxostat on atrial remodeling in a rabbit model of atrial fibrillation induced by rapid atrial pacing. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2019; 16:540-551. [PMID: 31447893 PMCID: PMC6689522 DOI: 10.11909/j.issn.1671-5411.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase (XO), may be used in the prevention and management of atrial fibrillation (AF). The purpose of this study was to evaluate the effects of febuxostat on atrial remodeling in a rabbit model of AF induced by rapid atrial pacing (RAP) and the mechanisms by which it acts. Methods Twenty-four rabbits were randomly divided into four groups: sham-operated group (Group S), RAP group (Group P), RAP with 5 mg/kg per day febuxostat group (Group LFP), and RAP with 10 mg/kg per day febuxostat group (Group HFP). All rabbits except those in Group S were subjected to RAP at 600 beats/min for four weeks. The effects of febuxostat on atrial electrical and structural remodeling, markers of inflammation and oxidative stress, and signaling pathways involved in the left atrium were examined. Results Shortened atrial effective refractory period (AERP), increased AF inducibility, decreased mRNA levels of Cav1.2 and Kv4.3, and left atrial enlargement and dysfunction were observed in Group P, and these changes were suppressed in the groups treated with febuxostat. Prominent atrial fibrosis was observed in Group P, as were increased levels of TGF-β1, Collagen I, and α-SMA and decreased levels of Smad7 and eNOS. Treatment with febuxostat attenuated these differences. Changes in inflammatory and oxidative stress markers induced by RAP were consistent with the protective effects of febuxostat. Conclusions This study is the first to find that febuxostat can inhibit atrial electrical and structural remodeling of AF by suppressing XO and inhibiting the TGF-β1/Smad signaling pathway.
Collapse
|
5
|
Chen K, Chen W, Liu SL, Wu TS, Yu KF, Qi J, Wang Y, Yao H, Huang XY, Han Y, Hou P. Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGF‑β1/Smad3 signaling pathway. Mol Med Rep 2018; 17:7652-7660. [PMID: 29620209 PMCID: PMC5983962 DOI: 10.3892/mmr.2018.8825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to assess the protective effect of epigallocatechingallate (EGCG) against myocardial injury in a mouse model of heart failure and to determine the mechanism underlying regulation of the transforming growth factor-β1/mothers against decapentaplegic homolog 3 (TGF-β1/Smad3) signaling pathway. Mouse models of heart failure were established. Alterations in ejection fraction, left ventricular internal diastolic diameter (LVIDd) and left ventricular internal systolic diameter (LVIDs) were measured by echocardiography. Pathological alterations of myocardial tissue were determined by hematoxylin and eosin, and Masson staining. The levels of serum brain natriuretic peptide (BNP), N-terminal-proBNP, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, malondialdehyde, superoxide dismutase and glutathione peroxidase were detected with ELISA. Expression of collagen I, collagen III were detected by western blotting and reverse transcription quantitative polymerase chain reaction. Transforming growth factor-β1 (TGF-β1), Smad3, phosphorylated (p)-Smad3, apoptosis regulator BAX (Bax), caspase-3 and apoptosis regulator Bcl2 in mouse cardiac tissue were measured by western blotting. P-smad3 and TGF-β1 were measured by immunofluorescence staining. EGCG reversed the alterations in LVIDd and LVIDs induced by establishment of the model of heart failure, increased ejection fraction, inhibited myocardial fibrosis, attenuated the oxidative stress, inflammatory and cardiomyocyte apoptosis and lowered the expression levels of collagen I and collagen III. Following treatment with TGF-β1 inhibitor, the protective effect of EGCG against heart failure was attenuated. The results of the present study demonstrated that EGCG can inhibit the progression and development of heart failure in mice through inhibition of myocardial fibrosis and reduction of ventricular collagen remodeling. This protective effect of EGCG is likely mediated through inhibition of TGF-β1/smad3 signaling pathway.
Collapse
Affiliation(s)
- Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wei Chen
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Shi Li Liu
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Tian Shi Wu
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Kai Feng Yu
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Jing Qi
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Yijun Wang
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Hui Yao
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Xiao Yang Huang
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Ying Han
- Department of Cardiology, Jinqiu Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Ping Hou
- Department of Cardiology, The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
6
|
KISHIMA HIDEYUKI, MINE TAKANAO, TAKAHASHI SATOSHI, ASHIDA KENKI, ISHIHARA MASAHARU, MASUYAMA TOHRU. The Impact of Transforming Growth Factor-β1
Level on Outcome After Catheter Ablation in Patients With Atrial Fibrillation. J Cardiovasc Electrophysiol 2017; 28:402-409. [DOI: 10.1111/jce.13169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Affiliation(s)
- HIDEYUKI KISHIMA
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| | - TAKANAO MINE
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| | - SATOSHI TAKAHASHI
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| | - KENKI ASHIDA
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| | - MASAHARU ISHIHARA
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| | - TOHRU MASUYAMA
- Department of Internal Medicine, Cardiovascular Division; Hyogo College of Medicine; Nishinomiya Japan
| |
Collapse
|
7
|
Li J, Yang Y, Ng CY, Zhang Z, Liu T, Li G. Association of Plasma Transforming Growth Factor-β1 Levels and the Risk of Atrial Fibrillation: A Meta-Analysis. PLoS One 2016; 11:e0155275. [PMID: 27171383 PMCID: PMC4865111 DOI: 10.1371/journal.pone.0155275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction Numerous studies have demonstrated that plasma transforming growth factor-β1 (TGF-β1) may be involved in the pathogenesis of atrial fibrillation (AF), but some discrepancy remained. We performed a meta-analysis to evaluate the association between the plasma level of TGF-β1 and the risk of AF. Methods Published clinical studies evaluating the association between the plasma level of TGF-β1 and the risk of AF were retrieved from PubMed and EMBASE databases. Two reviewers independently evaluated the quality of the included studies and extracted study data. Subgroup analysis and sensitivity analysis were performed to evaluate for heterogeneity between studies. Results Of the 395 studies identified initially, 13 studies were included into our analysis, with a total of 3354 patients. Higher plasma level of TGF-β1 was associated with increased risk of AF when evaluated as both a continuous variable (SMD 0.67; 95%CI 0.29–1.05) and a categorical variable (OR 1.01, 95% CI 1.01–1.02). Conclusions This meta-analysis suggests an association between elevated plasma TGF-β1 and new onset AF. Additional studies with larger sample sizes are needed to further investigate the relationship between plasma TGF-β1 and the occurrence of AF.
Collapse
Affiliation(s)
- Jiao Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Chee Yuan Ng
- Cardiac Arrhythmia Service, Massachusetts General Hospital, 55 Fruit St., Boston, Massachusetts, 02114, United States of America
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
- * E-mail: (TL); (GL)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
- * E-mail: (TL); (GL)
| |
Collapse
|
8
|
Tao H, Cao W, Shi KH. The fibrosis biomarkers procollagen type III, N-terminal propeptide and transforming growth factor β1 as foes for patients with atrial fibrillation. Am Heart J 2014; 168:e15. [PMID: 25262272 DOI: 10.1016/j.ahj.2014.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Sheng J, Shim W, Lu J, Lim SY, Ong BH, Lim TS, Liew R, Chua YL, Wong P. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med 2014; 18:355-62. [PMID: 24467431 PMCID: PMC3930421 DOI: 10.1111/jcmm.12240] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
Telocytes (TCs) with exceptionally long cellular processes of telopodes have been described in human epicardium to act as structural supporting cells in the heart. We examined myocardial chamber-specific TCs identified in atrial and ventricular fibroblast culture using immunocytochemistry and studied their electrophysiological property by whole-cell patch clamp. Atrial and ventricular TCs with extended telopodes and alternating podoms and podomers that expressed CD34, c-Kit and PDGFR-β were identified. These cells expressed large conductance Ca2+-activated K+ current (BKCa) and inwardly rectifying K+ current (IKir), but not transient outward K+ current (Ito) and ATP-sensitive potassium current (KATP). The active channels were functionally competent with demonstrated modulatory response to H2S and transforming growth factor (TGF)-β1 whereby H2S significantly inhibited the stimulatory effect of TGF-β1 on current density of both BKCa and IKir. Furthermore, H2S attenuated TGF-β1-stimulated KCa1.1/Kv1.1 (encode BKCa) and Kir2.1 (encode IKir) expression in TCs. Our results show that functionally competent K+ channels are present in human atrial and ventricular TCs and their modulation may have significant implications in myocardial physiopathology.
Collapse
Affiliation(s)
- Jingwei Sheng
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|