1
|
Donoghue LJ, McFadden KM, Vargas D, Smith GJ, Immormino RM, Moran TP, Kelada SNP. Collaborative cross strain CC011/UncJ as a novel mouse model of T2-high, severe asthma. Respir Res 2023; 24:153. [PMID: 37296458 PMCID: PMC10251525 DOI: 10.1186/s12931-023-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Among asthmatics, there is significant heterogeneity in the clinical presentation and underlying pathophysiological mechanisms, leading to the recognition of multiple disease endotypes (e.g., T2-high vs. T2-low). This heterogeneity extends to severe asthmatics, who may struggle to control symptoms even with high-dose corticosteroid treatment and other therapies. However, there are limited mouse models available to model the spectrum of severe asthma endotypes. We sought to identify a new mouse model of severe asthma by first examining responses to chronic allergen exposure among strains from the Collaborative Cross (CC) mouse genetics reference population, which contains greater genetic diversity than other inbred strain panels previously used for models of asthma. Mice from five CC strains and the often-used classical inbred strain BALB/cJ were chronically exposed to house dust mite (HDM) allergen for five weeks followed by measurements of airway inflammation. CC strain CC011/UncJ (CC011) exhibited extreme responses to HDM including high levels of airway eosinophilia, elevated lung resistance, and extensive airway wall remodeling, and even fatalities among ~ 50% of mice prior to study completion. Compared to BALB/cJ mice, CC011 mice had stronger Th2-mediated airway responses demonstrated by significantly elevated total and HDM-specific IgE and increased Th2 cytokines during tests of antigen recall, but not enhanced ILC2 activation. Airway eosinophilia in CC011 mice was completely dependent upon CD4+ T-cells. Notably, we also found that airway eosinophilia in CC011 mice was resistant to dexamethasone steroid treatment. Thus, the CC011 strain provides a new mouse model of T2-high, severe asthma driven by natural genetic variation likely acting through CD4+ T-cells. Future studies aimed at determining the genetic basis of this phenotype will provide new insights into mechanisms underlying severe asthma.
Collapse
Affiliation(s)
- Lauren J Donoghue
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Vargas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory J Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert M Immormino
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Moran
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Sun D, Yang H, Fan L, Shen F, Wang Z. m6A regulator-mediated RNA methylation modification patterns and immune microenvironment infiltration characterization in severe asthma. J Cell Mol Med 2021; 25:10236-10247. [PMID: 34647423 PMCID: PMC8572790 DOI: 10.1111/jcmm.16961] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
N6‐methyladenosine (m6A) modification is one of the most prevalent RNA modification forms of eukaryotic mRNA and is an important post‐transcriptional mechanism for regulating genes. However, the role of m6A modification in the regulation of severe asthma has never been reported. Thus, we aimed to investigate the m6A regulator‐mediated RNA methylation modification patterns and immune microenvironment infiltration characterization in severe asthma. In this study, 87 healthy controls and 344 severe asthma cases from the U‐BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) programme were used to systematically evaluate the m6A modification patterns mediated by 27 m6A regulators and to investigate the effects of m6A modification on immune microenvironment characteristics. We found that 16 m6A regulators were abnormal and identified two key m6A regulators (YTHDF3 and YTHDC1) and three m6A modification patterns. The study of infiltration characteristics of immune microenvironment found that pattern 2 had more infiltrating immune cells and more active immune response. Besides, it was found that the eosinophils which are very important for severe asthma were affected by YTHDF3 and EIF3B. We also verified key m6A regulators with merip‐seq and found that they were mainly distributed in exons and enriched in 3′UTR. In conclusion, our findings suggested that m6A modification plays a key role in severe asthma, and may be able to guide the future strategy of immunotherapy.
Collapse
Affiliation(s)
- Deyang Sun
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming Fan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenglin Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Wang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Dong Z, Ma Y, Zhou H, Shi L, Ye G, Yang L, Liu P, Zhou L. Integrated genomics analysis highlights important SNPs and genes implicated in moderate-to-severe asthma based on GWAS and eQTL datasets. BMC Pulm Med 2020; 20:270. [PMID: 33066754 PMCID: PMC7568423 DOI: 10.1186/s12890-020-01303-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Severe asthma is a chronic disease contributing to disproportionate disease morbidity and mortality. From the year of 2007, many genome-wide association studies (GWAS) have documented a large number of asthma-associated genetic variants and related genes. Nevertheless, the molecular mechanism of these identified variants involved in asthma or severe asthma risk remains largely unknown. Methods In the current study, we systematically integrated 3 independent expression quantitative trait loci (eQTL) data (N = 1977) and a large-scale GWAS summary data of moderate-to-severe asthma (N = 30,810) by using the Sherlock Bayesian analysis to identify whether expression-related variants contribute risk to severe asthma. Furthermore, we performed various bioinformatics analyses, including pathway enrichment analysis, PPI network enrichment analysis, in silico permutation analysis, DEG analysis and co-expression analysis, to prioritize important genes associated with severe asthma. Results In the discovery stage, we identified 1129 significant genes associated with moderate-to-severe asthma by using the Sherlock Bayesian analysis. Two hundred twenty-eight genes were prominently replicated by using MAGMA gene-based analysis. These 228 replicated genes were enriched in 17 biological pathways including antigen processing and presentation (Corrected P = 4.30 × 10− 6), type I diabetes mellitus (Corrected P = 7.09 × 10− 5), and asthma (Corrected P = 1.72 × 10− 3). With the use of a series of bioinformatics analyses, we highlighted 11 important genes such as GNGT2, TLR6, and TTC19 as authentic risk genes associated with moderate-to-severe/severe asthma. With respect to GNGT2, there were 3 eSNPs of rs17637472 (PeQTL = 2.98 × 10− 8 and PGWAS = 3.40 × 10− 8), rs11265180 (PeQTL = 6.0 × 10− 6 and PGWAS = 1.99 × 10− 3), and rs1867087 (PeQTL = 1.0 × 10− 4 and PGWAS = 1.84 × 10− 5) identified. In addition, GNGT2 is significantly expressed in severe asthma compared with mild-moderate asthma (P = 0.045), and Gngt2 shows significantly distinct expression patterns between vehicle and various glucocorticoids (Anova P = 1.55 × 10− 6). Conclusions Our current study provides multiple lines of evidence to support that these 11 identified genes as important candidates implicated in the pathogenesis of severe asthma.
Collapse
Affiliation(s)
- Zhouzhou Dong
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Yunlong Ma
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Linhui Shi
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Gongjie Ye
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Lei Yang
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Panpan Liu
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Li Zhou
- Department of Immunology and Rheumatology, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China.
| |
Collapse
|
5
|
Genetic architecture of moderate-to-severe asthma mirrors that of mild asthma. J Allergy Clin Immunol 2019; 144:1521-1523. [PMID: 31541629 DOI: 10.1016/j.jaci.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022]
|