1
|
González-Carracedo MA, Herrera-Luis E, Marco-Simancas M, Escuela-Escobar A, Martín-González E, Sardón-Prado O, Corcuera P, Hernández-Pérez JM, Lorenzo-Díaz F, Pérez-Pérez JA. Haplotype-Aware Detection of SERPINA1 Variants by Nanopore Sequencing. J Mol Diagn 2024; 26:971-987. [PMID: 39276924 DOI: 10.1016/j.jmoldx.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
α-1 Antitrypsin (AAT) is an acute-phase reactant with immunomodulatory properties that mainly inhibits neutrophil elastase. Low serum levels cause AAT deficiency (AATD), an underdiagnosed condition that predisposes to pulmonary and hepatic diseases. The SERPINA1 gene, which encodes AAT, contains >500 variants. PI∗Z and PI∗S alleles are the most diagnosed causes of AATD, but the role of the SERPINA1 haplotypes in AAT function remains unknown. SERPINA1 gene was PCR amplified from 94 patients with asthma, using primers with tails for indexing. Sequencing libraries were loaded into a MinION-Mk1C, and MinKNOW was used for basecalling and demultiplexing. Nanofilt and Minimap2 were used for filtering and mapping/alignment. Variant calling/phasing were performed with PEPPER-Margin-DeepVariant. SERPINA1 gene was 100% covered for all samples, with a minimum sequencing depth of 500×. A total of 75 single-nucleotide variants (SNVs) and 4 insertions/deletions were detected, with 45 and 2 of them highly polymorphic (minor allele frequency >0.1), respectively. Nine of the SNVs showed differences in allele frequencies when compared with the overall Spanish population. More than 90% of heterozygous SNVs were phased, yielding 91 and 58 different haplotypes for each SERPINA1 amplified region. Haplotype-based linkage disequilibrium analysis suggests that a recombination hotspot could generate variation in the SERPINA1 gene. The proposed workflow enables haplotype-aware genotyping of the SERPINA1 gene by nanopore sequencing, which will allow the development of novel AATD diagnostic strategies.
Collapse
Affiliation(s)
- Mario A González-Carracedo
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - María Marco-Simancas
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Ainhoa Escuela-Escobar
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain
| | - Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country, San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jose M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S. de Candelaria, Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - José A Pérez-Pérez
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
2
|
Zhu Z, Xing W, Yang Y, Liu X, Jiang T, Zhang X, Song Y, Hou D, Ta D. Computer-aided diagnosis of cystic lung diseases using CT scans and deep learning. Med Phys 2024; 51:5911-5926. [PMID: 39422997 DOI: 10.1002/mp.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Auxiliary diagnosis of different types of cystic lung diseases (CLDs) is important in the clinic and is instrumental in facilitating early and specific treatments. Current clinical methods heavily depend on accumulated experience, restricting their applicability in regions with less developed medical resources. Thus, how to realize the computer-aided diagnosis of CLDs is of great clinical value. PURPOSE This work proposed a deep learning-based method for automatically segmenting the lung parenchyma in computed tomography (CT) slice images and accurately diagnosing the CLDs using CT scans. METHODS A two-stage deep learning method was proposed for the automatic classification of normal cases and five different CLDs using CT scans. Lung parenchyma segmentation is the foundation of CT image analysis and auxiliary diagnosis. To meet the requirements of different sizes of the lung parenchyma, an adaptive region-growing and improved U-Net model was employed for mask acquisition and automatic segmentation. The former was achieved by a self-designed adaptive seed point selection method based on similarity measurement, and the latter introduced multiscale input and multichannel output into the original U-Net model and effectively achieved the lightweight design by adjusting the structure and parameters. After that, the middle 30 consecutive CT slice images of each sample were segmented to obtain lung parenchyma, which was employed for training and testing the proposed multichannel parallel input recursive MLP-Mixer network (MPIRMNet) model, achieving the computer-aided diagnosis of CLDs. RESULTS A total of 4718 and 16 290 CT slice images collected from 543 patients were employed to validate the proposed segmentation and classification methods, respectively. Experimental results showed that the improved U-Net model can accurately segment the lung parenchyma in CT slice images, with the Dice, precision, volumetric overlap error, and relative volume difference of 0.96 ± 0.01, 0.93 ± 0.04, 0.05 ± 0.02, and 0.05 ± 0.03, respectively. Meanwhile, the proposed MPIRMNet model achieved appreciable classification effect for normal cases and different CLDs, with the accuracy, sensitivity, specificity, and F1 score of 0.8823 ± 0.0324, 0.8897 ± 0.0325, 0.9746 ± 0.0078, and 0.8831 ± 0.0334, respectively. Compared with classical machine learning and convolutional neural networks-based methods for this task, the proposed classification method had a preferable performance, with a significant improvement of accuracy of 10.74%. CONCLUSIONS The work introduced a two-stage deep learning method, which can achieve the segmentation of lung parenchyma and the classification of CLDs. Compared to previous diagnostic tasks targeting single CLD, this work can achieve various CLDs' diagnosis in the early stage, thereby achieving targeted treatment and increasing the potential and value of clinical applications.
Collapse
Affiliation(s)
- Zhibin Zhu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Wenyu Xing
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Tao Jiang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xingwei Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Dongni Hou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
McElvaney OJ, Hagstrom J, Foreman MG, McElvaney NG. Undiagnosed Alpha-1 Antitrypsin Deficiency and the Perpetuation of Lung Health Inequity. Am J Respir Crit Care Med 2024; 209:3-5. [PMID: 37879066 PMCID: PMC10870886 DOI: 10.1164/rccm.202307-1171ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
| | | | | | - Noel G McElvaney
- Department of Medicine Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
4
|
Lafortune P, Zahid K, Ploszaj M, Awadalla E, Carroll TP, Geraghty P. Testing Alpha-1 Antitrypsin Deficiency in Black Populations. Adv Respir Med 2023; 92:1-12. [PMID: 38392031 PMCID: PMC10886060 DOI: 10.3390/arm92010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD.
Collapse
Affiliation(s)
- Pascale Lafortune
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Kanza Zahid
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Magdalena Ploszaj
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Emilio Awadalla
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Tomás P. Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| |
Collapse
|
5
|
Fraughen DD, Ghosh AJ, Hobbs BD, Funk GC, Meischl T, Clarenbach CF, Sievi NA, Schmid-Scherzer K, McElvaney OJ, Murphy MP, Roche AD, Clarke L, Strand M, Vafai-Tabrizi F, Kelly G, Gunaratnam C, Carroll TP, McElvaney NG. Augmentation Therapy for Severe Alpha-1 Antitrypsin Deficiency Improves Survival and Is Decoupled from Spirometric Decline-A Multinational Registry Analysis. Am J Respir Crit Care Med 2023; 208:964-974. [PMID: 37624745 PMCID: PMC10870866 DOI: 10.1164/rccm.202305-0863oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023] Open
Abstract
Rationale: Intravenous plasma-purified alpha-1 antitrypsin (IV-AAT) has been used as therapy for alpha-1 antitrypsin deficiency (AATD) since 1987. Previous trials (RAPID and RAPID-OLE) demonstrated efficacy in preserving computed tomography of lung density but no effect on FEV1. This observational study evaluated 615 people with severe AATD from three countries with socialized health care (Ireland, Switzerland, and Austria), where access to standard medical care was equal but access to IV-AAT was not. Objectives: To assess the real-world longitudinal effects of IV-AAT. Methods: Pulmonary function and mortality data were utilized to perform longitudinal analyses on registry participants with severe AATD. Measurements and Main Results: IV-AAT confers a survival benefit in severe AATD (P < 0.001). We uncovered two distinct AATD phenotypes based on an initial respiratory diagnosis: lung index and non-lung index. Lung indexes demonstrated a more rapid FEV1 decline between the ages of 20 and 50 and subsequently entered a plateau phase of minimal decline from 50 onward. Consequentially, IV-AAT had no effect on FEV1 decline, except in patients with a Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 lung index. Conclusions: This real-world study demonstrates a survival advantage from IV-AAT. This improved survival is largely decoupled from FEV1 decline. The observation that patients with severe AATD fall into two major phenotypes has implications for clinical trial design where FEV1 is a primary endpoint. Recruits into trials are typically older lung indexes entering the plateau phase and, therefore, unlikely to show spirometric benefits. IV-AAT attenuates spirometric decline in lung indexes in GOLD stage 2, a spirometric group commonly outside current IV-AAT commencement recommendations.
Collapse
Affiliation(s)
- Daniel D. Fraughen
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Auyon J. Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate University Hospital, Syracuse, New York
| | - Brian D. Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Georg-Christian Funk
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Tobias Meischl
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Noriane A. Sievi
- Department of Pneumology, University Hospital Zurich, Zurich, Switzerland
| | - Karin Schmid-Scherzer
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Oliver J. McElvaney
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| | - Mark P. Murphy
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adam D. Roche
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Louise Clarke
- Department of Respiratory Physiology, Beaumont Hospital, Dublin, Ireland; and
| | - Matthew Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado
| | - Florian Vafai-Tabrizi
- Karl Landsteiner Institute for Lung Research and Pulmonary Oncology and Department of Medicine II with Pneumology, Klinik Ottakring, Vienna, Austria
| | - Geraldine Kelly
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cedric Gunaratnam
- Department of Respiratory Physiology, Beaumont Hospital, Dublin, Ireland; and
| | - Tomás P. Carroll
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G. McElvaney
- Department of Medicine, Irish Center for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Ottaviani S, Bartoli G, Carroll TP, Gangemi F, Balderacchi AM, Barzon V, Corino A, Piloni D, McElvaney NG, Corsico AG, Irving JA, Fra A, Ferrarotti I. Comprehensive Clinical Diagnostic Pipelines Reveal New Variants in Alpha-1 Antitrypsin Deficiency. Am J Respir Cell Mol Biol 2023; 69:355-366. [PMID: 37071847 DOI: 10.1165/rcmb.2022-0470oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed disorder associated with mutations in the SERPINA1 gene encoding alpha-1 antitrypsin (AAT). Severe AATD can manifest as pulmonary emphysema and progressive liver disease. Besides the most common pathogenic variants S (E264V) and Z (E342K), many rarer genetic variants of AAT have been found in patients and in the general population. Here we report a panel of new SERPINA1 variants, including 4 null and 16 missense alleles, identified among a cohort of individuals with suspected AATD whose phenotypic follow-up showed inconclusive or atypical results. Because the pathogenic significance of the missense variants was unclear purely on the basis of clinical data, the integration of computational, biochemical, and cellular studies was used to define the associated risk of disease. Established pathogenicity predictors and structural analysis identified a panel of candidate damaging mutations that were characterized by expression in mammalian cell models. Polymer formation, intracellular accumulation, and secretory efficiency were evaluated experimentally. Our results identified two AAT mutants with a Z-like polymerogenic severe deficiency profile (Smilano and Mcampolongo) and three milder variants (Xsarezzo, Pdublin, and Ctiberias). Overall, the experimentally determined behavior of the variants was in agreement with the pathogenicity scores of the REVEL (an ensemble method for predicting the pathogenicity of rare missense variants) predictor, supporting the utility of this bioinformatic tool in the initial assessment of newly identified amino acid substitutions of AAT. Our study, in addition to describing 20 new SERPINA1 variants, provides a model for a multidisciplinary approach to classification of rare AAT variants and their clinical impact on individuals with rare AATD genotypes.
Collapse
Affiliation(s)
- Stefania Ottaviani
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Giulia Bartoli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tomás P Carroll
- α-1 Foundation Ireland, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Fabrizio Gangemi
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alice M Balderacchi
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Valentina Barzon
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, University of Pavia, Pavia, Italy
| | - Alessandra Corino
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Davide Piloni
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Noel G McElvaney
- α-1 Foundation Ireland, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Angelo G Corsico
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, University of Pavia, Pavia, Italy
- European Reference Network on Rare Respiratory Diseases (ERN-LUNG); and
| | - James A Irving
- University College London Respiratory, Rayne Institute and the Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Annamaria Fra
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Unità Operativa Complessa Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, University of Pavia, Pavia, Italy
- European Reference Network on Rare Respiratory Diseases (ERN-LUNG); and
| |
Collapse
|
7
|
Schuler BA, Bastarache L, Wang J, He J, Van Driest SL, Denny JC. Population genetic testing and SERPINA1 sequencing identifies unidentified alpha-1 antitrypsin deficiency alleles and gene-environment interaction with hepatitis C infection. PLoS One 2023; 18:e0286469. [PMID: 37651384 PMCID: PMC10470904 DOI: 10.1371/journal.pone.0286469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD), a relatively common autosomal recessive genetic disorder, is underdiagnosed in symptomatic individuals. We sought to compare the risk of liver transplantation associated with hepatitis C infection with AATD heterozygotes and homozygotes and determine if SERPINA1 sequencing would identify undiagnosed AATD. We performed a retrospective cohort study in a deidentified Electronic Health Record (EHR)-linked DNA biobank with 72,027 individuals genotyped for the M, Z, and S alleles in SERPINA1. We investigated liver transplantation frequency by genotype group and compared with hepatitis C infection. We performed SERPINA1 sequencing in carriers of pathogenic AATD alleles who underwent liver transplantation. Liver transplantation was associated with the Z allele (ZZ: odds ratio [OR] = 1.31, p<2e-16; MZ: OR = 1.02, p = 1.2e-13) and with hepatitis C (OR = 1.20, p<2e-16). For liver transplantation, there was a significant interaction between genotype and hepatitis C (ZZ: interaction OR = 1.23, p = 4.7e-4; MZ: interaction OR = 1.11, p = 6.9e-13). Sequencing uncovered a second, rare, pathogenic SERPINA1 variant in six of 133 individuals with liver transplants and without hepatitis C. Liver transplantation was more common in individuals with AATD risk alleles (including heterozygotes), and AATD and hepatitis C demonstrated evidence of a gene-environment interaction in relation to liver transplantation. The current AATD screening strategy may miss diagnoses whereas SERPINA1 sequencing may increase diagnostic yield for AATD, stratify risk for liver disease, and inform clinical management for individuals with AATD risk alleles and liver disease risk factors.
Collapse
Affiliation(s)
- Bryce A. Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Janey Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joshua C. Denny
- All of Us Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Önür ST. Initial alpha-1 antitrypsin screening in Turkish patients with chronic obstructive pulmonary disease. Turk J Med Sci 2023; 53:1012-1018. [PMID: 38031954 PMCID: PMC10760586 DOI: 10.55730/1300-0144.5665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/18/2023] [Accepted: 06/04/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin (AAT) deficiency is associated with several types of pathology, and the reported effects of mutations in the ATT-encoding gene vary worldwide. No Turkish study has yet appeared. We thus explored the AAT status of Turkish patients with chronic obstructive pulmonary disease (COPD). METHODS This prospective cross-sectional study included outpatients and inpatients treated from June 2021 to June 2022. Serum AAT levels were checked, and dry blood samples were subjected to genetic analysis. RESULTS : Genetic mutations were found in 21 (3.52%) of 596 patients with prior and new COPD diagnoses treated in our pneumonology outpatient department. The mean serum AAT level was 114.80 mg/dL (minimum 19, maximum 209; standard deviation 27.86 mg/dL). The most frequent mutation was M/Plowell (23.8%, n = 5), followed by M/S (23.8%, n = 5), M/I (19%, n = 4), M/Malton (14.3%, n = 3), Z/Z (9.5%, n = 2), M/Z (4.8%, n = 1), and Kayseri/Kayseri (4.8%, n = 1). Thoracic computed tomography revealed that 85.7% (n = 18) of all patients had emphysema, 28.5% (n = 6) had bronchiectasis, and 28.5% (n = 6) had mass lesions. Of the emphysema patients, 55% (n = 10) had only upper lobe emphysema, and 83.3% (n = 15) had emphysema in additional areas, but statistical significance was lacking (p > 0.05). DISCUSSION In patients with emphysema and normal serum AAT levels, genetic analyses may reveal relevant heterozygous mutations, which are commonly ignored. Most clinicians focus on lower lobe emphysema. Evaluations of such patients might reveal AAT mutations that are presently overlooked because they are not considered to influence COPD status.
Collapse
Affiliation(s)
- Seda Tural Önür
- Department of Pulmonology, Yedikule Chest Diseases and Thoracic Surgery Education and Research Hospital, University of Health Sciences, İstanbul, Turkiye
| |
Collapse
|
9
|
O’Shea O, Casey S, Giblin C, Stephenson A, Carroll TP, McElvaney NG, McDonough SM. Physical Activity, Exercise Capacity and Sedentary Behavior in People with Alpha-1 Antitrypsin Deficiency: A Scoping Review. Int J Chron Obstruct Pulmon Dis 2023; 18:1231-1250. [PMID: 37346078 PMCID: PMC10281283 DOI: 10.2147/copd.s389001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/07/2023] [Indexed: 06/23/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a hereditary disorder and a genetic risk factor for chronic obstructive pulmonary disease (COPD). Physical activity (PA) is important for the prevention and treatment of chronic disease. Little is known about PA in people with AATD. Therefore, we aimed to map the research undertaken to improve and/or measure PA, sedentary behaviour (SB) or exercise in people with AATD. Searches were conducted in CINAHL, Medline, EMBASE and clinical trial databases for studies published in 2021. Databases were searched for keywords (physical activity, AATD, exercise, sedentary behavior) as well as synonyms of these terms, which were connected using Boolean operators. The search yielded 360 records; 37 records were included for review. All included studies (n = 37) assessed exercise capacity; 22 studies reported the use of the six-minute walk test, the incremental shuttle walk test and cardiopulmonary exercise testing were reported in three studies each. Other objective measures of exercise capacity included a submaximal treadmill test, the Naughton protocol treadmill test, cycle ergometer maximal test, endurance shuttle walk test, constant cycle work rate test, a peak work rate test and the number of flights of stairs a participant was able to walk without stopping. A number of participant self-reported measures of exercise capacity were noted. Only one study aimed to analyze the effects of an intensive fitness intervention on daily PA. One further study reported on an exercise intervention and objectively measured PA at baseline. No studies measured SB. The assessment of PA and use of PA as an intervention in AATD is limited, and research into SB absent. Future research should measure PA and SB levels in people with AATD and explore interventions to enhance PA in this susceptible population.
Collapse
Affiliation(s)
- Orlagh O’Shea
- School of Physiotherapy, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Saidhbhe Casey
- School of Physiotherapy, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Ciaran Giblin
- School of Physiotherapy, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Aoife Stephenson
- School of Physiotherapy, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland
| | - Suzanne M McDonough
- School of Physiotherapy, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
- School of Health Sciences, University of Southampton, Southampton, UK
- Centre for Health and Rehabilitation Technologies, School of Health Sciences, Ulster University, Newtownabbey, BT37 0QB, UK
- School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Wang X, Liang Q, Li Z, Li F. Body Composition and COPD: A New Perspective. Int J Chron Obstruct Pulmon Dis 2023; 18:79-97. [PMID: 36788999 PMCID: PMC9922509 DOI: 10.2147/copd.s394907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The proportion of obese or overweight patients in COPD patients is increasing. Although BMI, WC and other easy to measure indicators have been proven to be related to the risk of COPD, they cannot accurately reflect the distribution and changes of body composition, ignoring the body composition (such as fat distribution, muscle content, water content, etc.), the relationship between it and disease risk may be missed. By analyzing the correlation between different body composition indexes and COPD patients, we can provide new research ideas for the prognosis judgment or intervention of COPD disease.
Collapse
Affiliation(s)
- Xin Wang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Urumqi, Xinjiang, People’s Republic of China
| | - Qianqian Liang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Urumqi, Xinjiang, People’s Republic of China
| | - Zheng Li
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Respiratory Disease Research, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center of Respiratory Obstructive Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Fengsen Li
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Respiratory Disease Research, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Clinical Medical Research Center of Respiratory Obstructive Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
11
|
Guillaud O, Dumortier J, Couchonnal-Bedoya E, Ruiz M. Wilson Disease and Alpha1-Antitrypsin Deficiency: A Review of Non-Invasive Diagnostic Tests. Diagnostics (Basel) 2023; 13:diagnostics13020256. [PMID: 36673066 PMCID: PMC9857715 DOI: 10.3390/diagnostics13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Wilson disease and alpha1-antitrypsin deficiency are two rare genetic diseases that may impact predominantly the liver and/or the brain, and the liver and/or the lung, respectively. The early diagnosis of these diseases is important in order to initiate a specific treatment, when available, ideally before irreversible organ damage, but also to initiate family screening. This review focuses on the non-invasive diagnostic tests available for clinicians in both diseases. These tests are crucial at diagnosis to reduce the potential diagnostic delay and assess organ involvement. They also play a pivotal role during follow-up to monitor disease progression and evaluate treatment efficacy of current or emerging therapies.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Ramsay Générale de Santé, Clinique de la Sauvegarde, 69009 Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Correspondence: ; Tel.: +33-4-72-11-95-19
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Eduardo Couchonnal-Bedoya
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour l’Atrésie des Voies Biliaires et les Cholestases Génétiques, 69500 Bron, France
| |
Collapse
|
12
|
Abstract
BACKGROUND AND OBJECTIVE Alpha-1 antitrypsin deficiency (AATD) is an uncommon but underdiagnosed cause of cirrhosis and lacks medical treatment options. It is important to recognize risk factors that contribute to disease progression and liver transplantation. We aimed to assess if age, sex, or smoking status was associated with liver or lung disease progression. METHODS Forty-three patients with ZZ-AATD cirrhosis were consecutively sampled from an Institutional Review Board-approved registry of 240 patients with AATD of any genotype seen as outpatients in the Cleveland Clinic between 1999 and 2019. To determine the association between risk factors and lung or liver disease progression, linear mixed-effects models with fixed effects for linear time, risk factor, and time-by-risk factor interaction, and the random intercepts for intra-patient correlation were used. RESULTS Based on the mixed-effects model analysis, there was a significant association between liver disease progression and smoking history, and no association with age or sex. There was no association between lung disease progression and age, sex, or smoking history. However, smoking history was significantly associated with lower forced expiratory volume values. CONCLUSION This study found that in a cohort of patients with PI*ZZ genotype AATD (ZZ-AATD) and cirrhosis, smoking history was associated with liver disease progression, whereas age and sex were not.
Collapse
|
13
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Methodologies for the Determination of Blood Alpha1 Antitrypsin Levels: A Systematic Review. J Clin Med 2021; 10:jcm10215132. [PMID: 34768650 PMCID: PMC8584727 DOI: 10.3390/jcm10215132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The study of hematic concentrations of alpha1 antitrypsin (AAT) is currently one step in the diagnosis of AAT deficiency. To try to clarify the relevance of the laboratory techniques, we carried out a systematic review of the literature. Methods: Studies evaluating the quantification of AAT in peripheral blood were searched in PubMed in July 2021. The selection criteria included (1) any type of study design that included a quantification of AAT in peripheral blood; (2) studies written in English or Spanish; (3) studies evaluating human beings; and (4) studies involving adults. Results: Out of 207 studies, the most frequently used techniques were nephelometry (43.9%), followed by ELISA (19.8%) and turbidimetry (13.5%). Altogether, 182 (87.9%) cases expressed their results in units of gram, while 16 (7.7%) articles expressed them in units of mole. Only 2.9% articles referred to the standard used, 43.5% articles indicated the commercial kit used, and 36.2% indicated the analyzer used. Conclusions: The technical aspects of these determinations are not always reported in the literature. Journals should be attentive to these technical requirements and ensure that they are included in the works in which AAT is determined in order to ensure a correct interpretation of the study findings.
Collapse
|
15
|
Pini L, Tiberio L, Arici M, Corda L, Giordani J, Bargagli E, Tantucci C. Z-alpha1-antitrypsin polymers and small airways disease: a new paradigm in alfa-1 anti-trypsin deficiency-related COPD development? Monaldi Arch Chest Dis 2021; 91. [PMID: 34468105 DOI: 10.4081/monaldi.2021.1883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
The presence of Alpha1-Antitrypsin (AAT) polymers, known to promote a sustained pro-inflammatory activity, has been previously demonstrated in bronchial biopsies of subjects with Z-AAT deficiency (AATD) suggesting a possible role in the development of COPD through a small airway disease impairment. The study aimed to assess the presence of small airways dysfunction and the potential correlation with the presence of Z-AAT polymers obtained by Exhaled Breath Condensate (EBC) collection in PiZZ subjects, as compared with matched healthy PiMM subjects. We enrolled 19 asymptomatic, never smoker subjects: 9 PiZZ and 10 PiMM as controls, without obstructive ventilatory defect (i.e., normal FEV1/VC% ratio). All subjects underwent complete pulmonary function tests (PFT). EBC was collected in all subjects. ELISA test was applied to search for Z-AAT polymers. The PiZZ subjects showed normal lung volumes and DLCO values. However, in comparison with PiMM subjects, the single breath test N2 wash-out revealed significant differences regarding the phase III slope (1.45±0.35 N2/L vs. 0.96±0.40 N2/L) (p<0.02) in the PiZZ subjects, while the closing volume/vital capacity ratio (14.3±4.5 % vs. 11.3±6.3 %) was not significantly increased. The ELISA test detected the presence of Z-AAT polymers in 44% of PiZZ patients. Asymptomatic, never smoker PiZZ subjects with normal spirometry and lung diffusion capacity showed airways impairment when compared to PiMM subjects. Although Z-AAT polymers were found only in 44% of PiZZ subjects, these findings suggest the possibility that chronic bronchiolitis can develop as a result of the long-term pro-inflammatory activity of Z-AAT polymers in subjects with Z-related AATD.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia.
| | - Marianna Arici
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Luciano Corda
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia.
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena.
| | - Claudio Tantucci
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| |
Collapse
|
16
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Franciosi AN, Ralph J, O'Farrell NJ, Buckley C, Gulmann C, O'Kane M, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency-associated panniculitis. J Am Acad Dermatol 2021; 87:825-832. [PMID: 33516773 DOI: 10.1016/j.jaad.2021.01.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Panniculitis represents a rare and potentially lethal manifestation of alpha-1 antitrypsin deficiency (AATD). Evidence regarding management is limited to case reports and small case series. We sought to clarify typical features and investigation of AATD-associated panniculitis and assess the evidence regarding therapeutic options. SEARCH METHODOLOGY Articles and abstracts published between 1970 and 2020 were identified by searches of MEDLINE, PubMed, and secondary searches of references from relevant articles using the search terms "panniculitis," "alpha-1," "antitrypsin," "deficiency," and "Weber-Christian." FINDINGS We identified 117 cases of AATD-associated panniculitis. In 1 series, AATD was present in 15% of all cases of biopsy-proven panniculitis. Failure to achieve clinical response was seen in all instances of systemic steroid use. Dapsone, although effective and accessible, is frequently associated with failure to achieve remission. In these instances, intravenous AAT augmentation therapy generally resulted in response. CONCLUSIONS AATD may be more prevalent among patients presenting with panniculitis than previously thought. Patients presenting with panniculitis and systemic illness show high mortality risk. Although most cases are associated with the severe ZZ-genotype, moderate genotypes may also predispose to panniculitis. Dapsone remains the most cost-effective therapeutic option, whereas intravenous AAT augmentation remains the most efficacious. Finally, glucocorticoids appear ineffective in this setting.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Department of Medicine, Beaumont Hospital, Dublin, Ireland; Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - James Ralph
- Department of Dermatology, Beaumont Hospital, Dublin, Ireland
| | | | - Colm Buckley
- Department of Histopathology, Beaumont Hospital, Dublin, Ireland
| | | | - Marina O'Kane
- Department of Dermatology, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland; Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G McElvaney
- Department of Medicine, Beaumont Hospital, Dublin, Ireland; Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Cronin T, Rasheed E, Naughton A, McElvaney NG, Carroll TP, Crowley VEF, Conlon N. Serendipitous detection of α 1-antitrypsin deficiency: a single institution's experience over a 32 month period. Clin Chem Lab Med 2021; 59:e293-e295. [PMID: 33544483 DOI: 10.1515/cclm-2020-1750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Thomas Cronin
- Department of Biochemistry, St James's Hospital, Dublin, Ireland
| | - Erum Rasheed
- Department of Biochemistry, St James's Hospital, Dublin, Ireland
| | - Aifric Naughton
- Department of Immunology, St James's Hospital, Dublin 8, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Alpha-1 Foundation Ireland, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin 8, Ireland.,Department of Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Nakanishi T, Forgetta V, Handa T, Hirai T, Mooser V, Lathrop GM, Cookson WOCM, Richards JB. The undiagnosed disease burden associated with alpha-1 antitrypsin deficiency genotypes. Eur Respir J 2020; 56:13993003.01441-2020. [PMID: 32675199 PMCID: PMC7726845 DOI: 10.1183/13993003.01441-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD), mainly due to the PI*ZZ genotype in SERPINA1, is one of the most common inherited diseases. Since it is associated with a high disease burden and partially prevented by smoking cessation, identification of PI*ZZ individuals through genotyping could improve health outcomes. We examined the frequency of the PI*ZZ genotype in individuals with and without diagnosed AATD from UK Biobank, and assessed the associations of the genotypes with clinical outcomes and mortality. A phenome-wide association study (PheWAS) was conducted to reveal disease associations with genotypes. A polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio was used to evaluate variable penetrance of PI*ZZ. Among 458 164 European-ancestry participants in UK Biobank, 140 had the PI*ZZ genotype and only nine (6.4%, 95% CI 3.4–11.7%) of them were diagnosed with AATD. Those with PI*ZZ had a substantially higher odds of COPD (OR 8.8, 95% CI 5.8–13.3), asthma (OR 2.0, 95% CI 1.4–3.0), bronchiectasis (OR 7.3, 95%CI 3.2–16.8), pneumonia (OR 2.7, 95% CI 1.5–4.9) and cirrhosis (OR 7.8, 95% CI 2.5–24.6) diagnoses and a higher hazard of mortality (2.4, 95% CI 1.2–4.6), compared to PI*MM (wildtype) (n=398 424). These associations were stronger among smokers. PheWAS demonstrated associations with increased odds of empyema, pneumothorax, cachexia, polycythaemia, aneurysm and pancreatitis. Polygenic risk score and PI*ZZ were independently associated with FEV1/FVC <0.7 (OR 1.4 per 1-sd change, 95% CI 1.4–1.5 and OR 4.5, 95% CI 3.0–6.9, respectively). The important underdiagnosis of AATD, whose outcomes are partially preventable through smoking cession, could be improved through genotype-guided diagnosis. Only 6.4% of those with genotype-defined alpha-1 antitrypsin deficiency had been diagnosed with this serious disease in UK Biobank. Genotype-guided diagnosis could help to identify the thousands of people in the UK with this partially preventable disease. https://bit.ly/3dMu5Ng
Collapse
Affiliation(s)
- Tomoko Nakanishi
- Dept of Human Genetics, McGill University, Montréal, QC, Canada.,Centre for Clinical Epidemiology, Dept of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada.,Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Dept of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Tomohiro Handa
- Dept of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Vincent Mooser
- Dept of Human Genetics, McGill University, Montréal, QC, Canada.,Canada Excellence Research Chair in Genomic Medicine, McGill University, Montréal, QC, Canada
| | - G Mark Lathrop
- McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - William O C M Cookson
- National Heart and Lung Institute, Imperial College London, London, UK.,Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - J Brent Richards
- Dept of Human Genetics, McGill University, Montréal, QC, Canada .,Centre for Clinical Epidemiology, Dept of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada.,Division of Endocrinology, Depts of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Miravitlles M, Nuñez A, Torres-Durán M, Casas-Maldonado F, Rodríguez-Hermosa JL, López-Campos JL, Calle M, Rodríguez E, Esquinas C, Barrecheguren M. The Importance of Reference Centers and Registries for Rare Diseases: The Example of Alpha-1 Antitrypsin Deficiency. COPD 2020; 17:346-354. [PMID: 32791925 DOI: 10.1080/15412555.2020.1795824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Torres-Durán
- Servicio de Neumología, Hospital Álvaro Cunqueiro. NeumoVigoI + i Research Group, IIS Galicia Sur, Vigo, Spain
| | - Francisco Casas-Maldonado
- Servicio de Neumología, Hospital Universitario San Cecilio, Departamento de Medicina, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Juan Luis Rodríguez-Hermosa
- Servicio de Neumología. Hospital Clínico de San Carlos, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José Luis López-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Myriam Calle
- Servicio de Neumología. Hospital Clínico de San Carlos, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Esther Rodríguez
- Pneumology Department, Hospital Universitari Vall d'Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d'Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron; Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Mattman A, Gilfix BM, Chen SX, DeMarco ML, Kyle BD, Parker ML, Agbor TA, Jung B, Selvarajah S, Barakauskas VE, Vaags AK, Estey MP, Nelson TN, Speevak MD. Alpha-1-antitrypsin molecular testing in Canada: A seven year, multi-centre comparison. Clin Biochem 2020; 81:27-33. [DOI: 10.1016/j.clinbiochem.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
|
22
|
Emphysema in a Middle-aged Former Smoker. Ann Am Thorac Soc 2020; 17:762-766. [DOI: 10.1513/annalsats.202001-057cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - Noel G McElvaney
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - David A Lomas
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| |
Collapse
|
24
|
Wang C, Zhao P, Sun S, Teckman J, Balch WE. Leveraging Population Genomics for Individualized Correction of the Hallmarks of Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:224-246. [PMID: 32726074 DOI: 10.15326/jcopdf.7.3.2019.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep medicine is rapidly moving towards a high-definition approach for therapeutic management of the patient as an individual given the rapid progress of genome sequencing technologies and machine learning algorithms. While considered a monogenic disease, alpha-1 antitrypsin (AAT) deficiency (AATD) patients present with complex and variable phenotypes we refer to as the "hallmarks of AATD" that involve distinct molecular mechanisms in the liver, plasma and lung tissues, likely due to both coding and non-coding variation as well as genetic and environmental modifiers in different individuals. Herein, we briefly review the current therapeutic strategies for the management of AATD. To embrace genetic diversity in the management of AATD, we provide an overview of the disease phenotypes of AATD patients harboring different AAT variants. Linking genotypic diversity to phenotypic diversity illustrates the potential for sequence-specific regions of AAT protein fold design to play very different roles during nascent synthesis in the liver and/or function in post-liver plasma and lung environments. We illustrate how to manage diversity with recently developed machine learning (ML) approaches that bridge sequence-to-function-to-structure knowledge gaps based on the principle of spatial covariance (SCV). SCV relationships provide a deep understanding of the genotype to phenotype transformation initiated by AAT variation in the population to address the role of genetic and environmental modifiers in the individual. Embracing the complexity of AATD in the population is critical for risk management and therapeutic intervention to generate a high definition medicine approach for the patient.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| |
Collapse
|