1
|
Nick JA, Malcolm KC, Hisert KB, Wheeler EA, Rysavy NM, Poch K, Caceres S, Lovell VK, Armantrout E, Saavedra MT, Calhoun K, Chatterjee D, Aboellail I, De P, Martiniano SL, Jia F, Davidson RM. Culture independent markers of nontuberculous mycobacterial (NTM) lung infection and disease in the cystic fibrosis airway. Tuberculosis (Edinb) 2023; 138:102276. [PMID: 36417800 PMCID: PMC10965158 DOI: 10.1016/j.tube.2022.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic pathogens that affect a relatively small but significant portion of the people with cystic fibrosis (CF), and may cause increased morbidity and mortality in this population. Cultures from the airway are the only test currently in clinical use for detecting NTM. Culture techniques used in clinical laboratories are insensitive and poorly suited for population screening or to follow progression of disease or treatment response. The lack of sensitive and quantitative markers of NTM in the airway impedes patient care and clinical trial design, and has limited our understanding of patterns of acquisition, latency and pathogenesis of disease. Culture-independent markers of NTM infection have the potential to overcome many of the limitations of standard NTM cultures, especially the very slow growth, inability to quantitate bacterial burden, and low sensitivity due to required decontamination procedures. A range of markers have been identified in sputum, saliva, breath, blood, urine, as well as radiographic studies. Proposed markers to detect presence of NTM or transition to NTM disease include bacterial cell wall products and DNA, as well as markers of host immune response such as immunoglobulins and the gene expression of circulating leukocytes. In all cases the sensitivity of culture-independent markers is greater than standard cultures; however, most do not discriminate between various NTM species. Thus, each marker may be best suited for a specific clinical application, or combined with other markers and traditional cultures to improve diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Emily Armantrout
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Milene T Saavedra
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kara Calhoun
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ibrahim Aboellail
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Jia
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| |
Collapse
|
2
|
Mendelsohn SC, Mbandi SK, Fiore-Gartland A, Penn-Nicholson A, Musvosvi M, Mulenga H, Fisher M, Hadley K, Erasmus M, Nombida O, Tameris M, Walzl G, Naidoo K, Churchyard G, Hatherill M, Scriba TJ. Prospective multicentre head-to-head validation of host blood transcriptomic biomarkers for pulmonary tuberculosis by real-time PCR. COMMUNICATIONS MEDICINE 2022; 2:26. [PMID: 35342900 PMCID: PMC8954216 DOI: 10.1038/s43856-022-00086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 01/31/2023] Open
Abstract
Background Sensitive point-of-care screening tests are urgently needed to identify individuals at highest risk of tuberculosis. We prospectively tested performance of host-blood transcriptomic tuberculosis signatures. Methods Adults without suspicion of tuberculosis were recruited from five endemic South African communities. Eight parsimonious host-blood transcriptomic tuberculosis signatures were measured by microfluidic RT-qPCR at enrolment. Upper respiratory swab specimens were tested with a multiplex bacterial-viral RT-qPCR panel in a subset of participants. Diagnostic and prognostic performance for microbiologically confirmed prevalent and incident pulmonary tuberculosis was tested in all participants at baseline and during active surveillance through 15 months follow-up, respectively. Results Among 20,207 HIV-uninfected and 963 HIV-infected adults screened; 2923 and 861 were enroled. There were 61 HIV-uninfected (weighted prevalence 1.1%) and 10 HIV-infected (prevalence 1.2%) tuberculosis cases at baseline. Parsimonious signature diagnostic performance was superior among symptomatic (AUCs 0.85-0.98) as compared to asymptomatic (AUCs 0.61-0.78) HIV-uninfected participants. Thereafter, 24 HIV-uninfected and 9 HIV-infected participants progressed to incident tuberculosis (1.1 and 1.0 per 100 person-years, respectively). Among HIV-uninfected individuals, prognostic performance for incident tuberculosis occurring within 6-12 months was higher relative to 15 months. 1000 HIV-uninfected participants were tested for respiratory microorganisms and 413 HIV-infected for HIV plasma viral load; 7/8 signature scores were higher (p < 0.05) in participants with viral respiratory infections or detectable HIV viraemia than those without. Conclusions Several parsimonious tuberculosis transcriptomic signatures met triage test targets among symptomatic participants, and incipient test targets within 6 months. However, the signatures were upregulated with viral infection and offered poor specificity for diagnosing sub-clinical tuberculosis.
Collapse
Affiliation(s)
- Simon C. Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Katie Hadley
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Onke Nombida
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Michèle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research; South African Medical Research Council Centre for TB Research; Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, 7505 Cape Town, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), 4001 Durban, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 4001 Durban, South Africa
| | - Gavin Churchyard
- The Aurum Institute, 2194 Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, 2193 Johannesburg, South Africa
- Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, 7925 Cape Town, South Africa
| |
Collapse
|
3
|
Abstract
The majority of humans infected with Mycobacterium tuberculosis never experience clinical symptoms or signs, but predicting those who will remains out of reach. Here, we discuss recent studies that reveal patterns and pathways that determine who is at highest risk for progression.
Collapse
Affiliation(s)
- Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Mendelsohn SC, Mulenga H, Mbandi SK, Darboe F, Shelton M, Scriba TJ, Hatherill M. Host blood transcriptomic biomarkers of tuberculosis disease in people living with HIV: a systematic review protocol. BMJ Open 2021; 11:e048623. [PMID: 34353800 PMCID: PMC8344288 DOI: 10.1136/bmjopen-2021-048623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Current tuberculosis triage and predictive tools offer poor accuracy and are ineffective for detecting asymptomatic disease in people living with HIV (PLHIV). Host tuberculosis transcriptomic biomarkers hold promise for diagnosing prevalent and predicting progression to incident tuberculosis and guiding further investigation, preventive therapy and follow-up. We aim to conduct a systematic review of performance of transcriptomic signatures of tuberculosis in PLHIV. METHODS AND ANALYSIS We will search MEDLINE (PubMed), WOS Core Collection, Biological Abstracts, and SciELO Citation Index (Web of Science), Africa-Wide Information and General Science Abstracts (EBSCOhost), Scopus, and Cochrane Central Register of Controlled Trials databases for articles published in English between 1990 and 2020. Case-control, cross-sectional, cohort and randomised controlled studies evaluating performance of diagnostic and prognostic host-response transcriptomic signatures in PLHIV of all ages and settings will be included. Eligible studies will include PLHIV in signature test or validation cohorts, and use microbiological, clinical, or composite reference standards for pulmonary or extrapulmonary tuberculosis diagnosis. Study quality will be evaluated using the 'Quality Assessment of Diagnostic Accuracy Studies-2' tool and cumulative review evidence assessed using the 'Grading of Recommendations Assessment, Development and Evaluation' approach. Study selection, quality appraisal and data extraction will be performed independently by two reviewers. Study, cohort and signature characteristics of included studies will be tabulated, and a narrative synthesis of findings presented. Primary outcomes of interest, biomarker sensitivity and specificity with estimate precision, will be summarised in forest plots. Expected heterogeneity in signature characteristics, study settings, and study designs precludes meta-analysis and pooling of results. Review reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies guidelines. ETHICS AND DISSEMINATION Formal ethics approval is not required as primary human participant data will not be collected. Results will be disseminated through peer-reviewed publication and conference presentation. PROSPERO REGISTRATION NUMBER CRD42021224155.
Collapse
Affiliation(s)
- Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Mary Shelton
- Bongani Mayosi Health Sciences Library, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| |
Collapse
|
5
|
Perumal P, Abdullatif MB, Garlant HN, Honeyborne I, Lipman M, McHugh TD, Southern J, Breen R, Santis G, Ellappan K, Kumar SV, Belgode H, Abubakar I, Sinha S, Vasan SS, Joseph N, Kempsell KE. Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Front Immunol 2021; 11:612564. [PMID: 33841389 PMCID: PMC8029985 DOI: 10.3389/fimmu.2020.612564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains challenging, particularly in high-burden countries which still rely heavily on conventional methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert, they are not universally available in all high TB burden countries. There is intense focus on immune biomarkers for use in TB diagnosis, which could provide alternative low-cost, rapid diagnostic solutions. In our previous gene expression studies, we identified peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB aerosol-challenge model. Here, we describe a study to further validate select mRNA biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite for further development. Whole blood mRNA was purified from ATB patients recruited in the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed using GeneSpring™ 14.9 bioinformatics software. Differential expression of fifty-three biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver operating characteristic (ROC) curve analysis. Single biomarkers and biomarker combinations were further assessed using simple arithmetic algorithms. Minimal combination biomarker panels were delineated for primary diagnosis of ATB (both PTB and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed good performance characteristics. These were assessed for suitability for progression against the standards for new TB diagnostic tests delineated in the published World Health Organization (WHO) technology product profiles (TPPs).
Collapse
Affiliation(s)
- Prem Perumal
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | | | - Harriet N. Garlant
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Isobella Honeyborne
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Marc Lipman
- UCL Respiratory, University College London, Royal Free Campus, London, United Kingdom
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Jo Southern
- Institute for Global Health, University College London, London, United Kingdom
| | - Ronan Breen
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - George Santis
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kalaiarasan Ellappan
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Saka Vinod Kumar
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Harish Belgode
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, United Kingdom
| | - Sanjeev Sinha
- Department of Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Seshadri S. Vasan
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
- Department of Health Sciences, University of York, York, United Kingdom
| | - Noyal Joseph
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Karen E. Kempsell
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|