1
|
Benfante A, Pirrello G, Sala F, Seminara G, Scichilone N. Coronavirus disease 2019 and severe asthma. Curr Opin Allergy Clin Immunol 2023; 23:193-198. [PMID: 36752375 DOI: 10.1097/aci.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the most severe forms of asthma has been an object of discussion. Indeed, it is not clear whether asthma is among the risk factors for the occurrence of severe coronavirus disease 2019 (COVID-19) disease, or rather it plays a protective role against the worsening of the respiratory involvement in the SARS-CoV-2 infection. On the other hand, the extent to which coronavirus infection may trigger asthma attacks is still partly unknown. The current investigation aims at reviewing the available literature on the topic to address factors influencing this relationship. RECENT FINDINGS Based on recent observations, it is likely that type 2 inflammation plays a protective role against SARS-CoV-2 infection and disease. In particular, asthmatics show different expression of angiotensin-converting enzyme2 (ACE2) and Transmembrane protease, serine 2 (TMPRSS2) that are responsible for a reduced risk of infection as well as lower risk of hospitalization. Interestingly, studies showed a safe profile of inhaled corticosteroids and biological drugs in SARS-CoV-2 infection. In addition, inhaled corticosteroid could play a protective role against worsening of asthma. SUMMARY The current findings suggest that current treatment for asthma should be maintained to avoid severe exacerbations. Severe asthmatics under biological treatment should continue their medications, and be encouraged to receive COVID-19 vaccines.
Collapse
Affiliation(s)
- Alida Benfante
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Division of Respiratory Medicine, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
2
|
Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, Agustí A. Inhaled corticosteroids for the treatment of COVID-19. Eur Respir Rev 2022; 31:220099. [PMID: 36450371 PMCID: PMC9724831 DOI: 10.1183/16000617.0099-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused severe illness and mortality for millions worldwide. Despite the development, approval and rollout of vaccination programmes globally to prevent infection by SARS-CoV-2 and the development of coronavirus disease 2019 (COVID-19), treatments are still urgently needed to improve outcomes. Early in the pandemic it was observed that patients with pre-existing asthma or COPD were underrepresented among those with COVID-19. Evidence from clinical studies indicates that the inhaled corticosteroids (ICS) routinely taken for asthma and COPD could have had a protective role in preventing severe COVID-19 and, therefore, may be a promising treatment for COVID-19. This review summarises the evidence supporting the beneficial effects of ICS on outcomes in patients with COVID-19 and explores the potential protective mechanisms.
Collapse
Affiliation(s)
- Mona Bafadhel
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, IDIBAPS, Barcelona, Spain
| | - Camille Taillé
- Department of Pulmonary Diseases, University Hospital Bichat-Claude Bernard, AP-HP Nord, University of Paris, Paris, France
| | - Richard E K Russell
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover University School of Medicine, Hannover, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alvar Agustí
- Cátedra de Salud Respiratoria (University of Barcelona), Respiratory Institute (Hospital Clinic Barcelona), IDIBAPS and CIBERES, Barcelona, Spain
| |
Collapse
|
3
|
Li Y, Liu Y, Duo M, Wu R, Jiang T, Li P, Wang Y, Cheng Z. Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients. Cell Commun Signal 2022; 20:201. [PMID: 36575422 PMCID: PMC9793391 DOI: 10.1186/s12964-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 causes coronavirus disease 19 (COVID-19). The number of confirmed cases of COVID-19 is also rapidly increasing worldwide, posing a significant challenge to human safety. Asthma is a risk factor for COVID-19, but the underlying molecular mechanisms of the asthma-COVID-19 interaction remain unclear. METHODS We used transcriptome analysis to discover molecular biomarkers common to asthma and COVID-19. Gene Expression Omnibus database RNA-seq datasets (GSE195599 and GSE196822) were used to identify differentially expressed genes (DEGs) in asthma and COVID-19 patients. After intersecting the differentially expressed mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the common pathogenic molecular mechanism. Bioinformatic methods were used to construct protein-protein interaction (PPI) networks and identify key genes from the networks. An online database was used to predict interactions between transcription factors and key genes. The differentially expressed long noncoding RNAs (lncRNAs) in the GSE195599 and GSE196822 datasets were intersected to construct a competing endogenous RNA (ceRNA) regulatory network. Interaction networks were constructed for key genes with RNA-binding proteins (RBPs) and oxidative stress-related proteins. The diagnostic efficacy of key genes in COVID-19 was verified with the GSE171110 dataset. The differential expression of key genes in asthma was verified with the GSE69683 dataset. An asthma cell model was established with interleukins (IL-4, IL-13 and IL-17A) and transfected with siRNA-CXCR1. The role of CXCR1 in asthma development was preliminarily confirmed. RESULTS By intersecting the differentially expressed genes for COVID-19 and asthma, 393 common DEGs were obtained. GO and KEGG enrichment analyses of the DEGs showed that they mainly affected inflammation-, cytokine- and immune-related functions and inflammation-related signaling pathways. By analyzing the PPI network, we obtained 10 key genes: TLR4, TLR2, MMP9, EGF, HCK, FCGR2A, SELP, NFKBIA, CXCR1, and SELL. By intersecting the differentially expressed lncRNAs for COVID-19 and asthma, 13 common differentially expressed lncRNAs were obtained. LncRNAs that regulated microRNAs (miRNAs) were mainly concentrated in intercellular signal transduction, apoptosis, immunity and other related functional pathways. The ceRNA network suggested that there were a variety of regulatory miRNAs and lncRNAs upstream of the key genes. The key genes could also bind a variety of RBPs and oxidative stress-related genes. The key genes also had good diagnostic value in the verification set. In the validation set, the expression of key genes was statistically significant in both the COVID-19 group and the asthma group compared with the healthy control group. CXCR1 expression was upregulated in asthma cell models, and interference with CXCR1 expression significantly reduced cell viability. CONCLUSIONS Key genes may become diagnostic and predictive biomarkers of outcomes in COVID-19 and asthma. Video Abstract.
Collapse
Affiliation(s)
- Yue Li
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ye Liu
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ruhao Wu
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Tianci Jiang
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Pengfei Li
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yu Wang
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhe Cheng
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
4
|
Kuo KC, Chen CH, Wang CJ, Wu JC, Chung HP, Chen YT, Tang YH, Chang WK, Lin CY, Wu CL. Clinical benefits of inhaled ciclesonide for hospitalized patients with COVID-19 infection: a retrospective study. BMC Pulm Med 2022; 22:368. [PMID: 36171597 PMCID: PMC9517967 DOI: 10.1186/s12890-022-02168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background The successful management of patients infected with coronavirus disease 2019 (COVID-19) with inhaled ciclesonide has been reported, however few studies have investigated its application among hospitalized patients. Methods This retrospective cohort study enrolled all adult patients admitted to our hospital with confirmed COVID-19 infection from May to June 2021. Critical patients who received mechanical ventilation within 24 h after admission and those who started ciclesonide more than 14 days after symptom onset were excluded. The in-hospital mortality rate was compared between those who did and did not receive inhaled ciclesonide. Results A total of 269 patients were enrolled, of whom 184 received inhaled ciclesonide and 85 did not. The use of ciclesonide was associated with lower in-hospital mortality (7.6% vs. 23.5%, p = 0.0003) and a trend of shorter hospital stay (12.0 (10.0–18.0) days vs. 13.0 (10.0–25.3) days, p = 0.0577). In subgroup analysis, the use of inhaled ciclesonide significantly reduced mortality in the patients with severe COVID-19 infection (6.8% vs. 50.0%, p < 0.0001) and in those with a high risk of mortality (16.4% vs. 43.2%, p = 0.0037). The use of inhaled ciclesonide also reduced the likelihood of receiving mechanical ventilation in the patients with severe COVID-19 infection. After multivariate analysis, inhaled ciclesonide remained positively correlated with a lower risk of in-hospital mortality (odds ratio: 0.2724, 95% confidence interval: 0.087–0.8763, p = 0.0291). Conclusions The use of inhaled ciclesonide in hospitalized patients with COVID-19 infection can reduce in-hospital mortality. Further randomized studies in patients with moderate to severe COVID-19 infection are urgently needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02168-8.
Collapse
Affiliation(s)
- Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chao-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan. .,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamshui District, New Taipei City, 25160, Taiwan
| |
Collapse
|