1
|
Kachot RL, Patel UD, Patel HB, Modi CM, Chauhan R, Kariya MH, Bhadaniya AR. Neurotoxicity of acrylamide in adult zebrafish following short-term and long-term exposure: evaluation of behavior alterations, oxidative stress markers, expression of antioxidant genes, and histological examination of the brain and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40116-40131. [PMID: 36607571 DOI: 10.1007/s11356-022-25112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
In the present work, 224 adult female zebrafish (56 fish in each group) were randomly divided into four groups (two control groups and two toxicity groups) as per duration of exposure (7 and 21 days). All fish of the two toxicity groups were exposed to 0.610 mM acrylamide (ACR) concentration for 7 and 21 days. The effects of ACR exposure on behavior, oxidative stress biomarkers, molecular expression of antioxidant genes (sod, cat, and nrf2), and histopathological examination of the brain and eye were examined. Our result shows that ACR exposure for 7 days produced an anxiety-like behavior in zebrafish. Short-term exposure of ACR resulted in alterations of oxidative stress markers (SOD and CAT activity, and the level of GSH and MDA) in the brain and eye of zebrafish. However, the antioxidant defense system of adult female zebrafish could be able to counteract the free radicals generated in long-term ACR exposure as indicated by non-significant difference in oxidative insult following short-term and long-term exposure. ACR exposure downregulated the mRNA expression of the sod, cat, and nrf2 (nuclear factor erythroid 2-related factor 2) genes in the brain and eye without significant difference between the two toxicity groups. Mild histological changes in the dorsal telencephalic area, tectum opticum, medulla, and hypothalamus area of the brain of zebrafish have been observed following short-term and long-term ACR exposure. In the eye, marked histological changes in the retinal pigmented epithelium layer (RPE), structural changes of the photoreceptor layer (PRL) with disorganized layer of rods and cones, and reduction of the relative thickness of the RPE, PRL, outer nuclear layer (ONL), and inner nuclear layer (INL) have been noted following ACR exposure for 21 days as compared to 7 days. ACR produced neurobehavioral aberrations and oxidative stress within 7 days of exposure, while various histological changes in the brain and eyes have been observed following long-term exposure (21 days) to ACR.
Collapse
Affiliation(s)
- Rajesh L Kachot
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India.
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - RadheyShyam Chauhan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Mayank H Kariya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Amit R Bhadaniya
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| |
Collapse
|
2
|
Albalawi A, Alhasani RHA, Biswas L, Reilly J, Akhtar S, Shu X. Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res 2018; 175:103-114. [DOI: 10.1016/j.exer.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
|
3
|
Prats E, Gómez-Canela C, Ben-Lulu S, Ziv T, Padrós F, Tornero D, Garcia-Reyero N, Tauler R, Admon A, Raldúa D. Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci Rep 2017; 7:13952. [PMID: 29066856 PMCID: PMC5655329 DOI: 10.1038/s41598-017-14460-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR), a type-2 alkene, may lead to a synaptopathy characterized by ataxia, skeletal muscles weakness and numbness of the extremities in exposed human and laboratory animals. Currently, only the mildly affected patients undergo complete recovery, and identification of new molecules with therapeutic bioactivity against ACR acute neurotoxicity is urgently needed. Here, we have generated a zebrafish model for ACR neurotoxicity by exposing 5 days post-fertilization zebrafish larvae to 1 mM ACR for 3 days. Our results show that zebrafish mimics most of the pathophysiological processes described in humans and mammalian models. Motor function was altered, and specific effects were found on the presynaptic nerve terminals at the neuromuscular junction level, but not on the axonal tracts or myelin sheath integrity. Transcriptional markers of proteins involved in synaptic vesicle cycle were selectively altered, and the proteomic analysis showed that ACR-adducts were formed on cysteine residues of some synaptic proteins. Finally, analysis of neurotransmitters profile showed a significant effect on cholinergic and dopaminergic systems. These data support the suitability of the developed zebrafish model for screening of molecules with therapeutic value against this toxic neuropathy.
Collapse
Affiliation(s)
- Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Shani Ben-Lulu
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinària. Universitat Autònoma de Barcelona, 08190, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Natàlia Garcia-Reyero
- Environmental Laboratory-US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Arie Admon
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
4
|
Albalawi A, Alhasani RHA, Biswas L, Reilly J, Shu X. Protective effect of carnosic acid against acrylamide-induced toxicity in RPE cells. Food Chem Toxicol 2017; 108:543-553. [DOI: 10.1016/j.fct.2017.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 01/11/2023]
|
5
|
Jia L, Raghupathy RK, Albalawi A, Zhao Z, Reilly J, Xiao Q, Shu X. A colour preference technique to evaluate acrylamide-induced toxicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:11-19. [PMID: 28111251 DOI: 10.1016/j.cbpc.2017.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
The zebrafish has become a commonly used vertebrate model for toxicity assessment, of particular relevance to the study of toxic effects on the visual system because of the structural similarities shared by zebrafish and human retinae. In this article we present a colour preference-based technique that, by assessing the functionality of photoreceptors, can be used to evaluate the effects of toxicity on behaviour. A digital camera was used to record the locomotor behaviour of individual zebrafish swimming in a water tank consisting of two compartments separated by an opaque perforated wall through which the fish could pass. The colour of the lighting in each compartment could be altered independently (producing distinct but connected environments of white, red or blue) to allow association of the zebrafish's swimming behaviour with its colour preference. The functionality of the photoreceptors was evaluated based on the ability of the zebrafish to sense the different colours and to swim between the compartments. The zebrafish tracking was carried out using our algorithm developed with MATLAB. We found that zebrafish preferred blue illumination to white, and white illumination to red. Acute treatment with acrylamide (2mM for 36h) resulted in a marked reduction in locomotion and a concomitant loss of colour-preferential swimming behaviour. Histopathological examination of acrylamide-treated zebrafish eyes showed that acrylamide exposure had caused retinal damage. The colour preference tracking technique has applications in the assessment of neurodegenerative disorders, as a method for preclinical appraisal of drug efficacy and for behavioural evaluation of toxicity.
Collapse
Affiliation(s)
- Laibing Jia
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, United Kingdom; School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | | | - Aishah Albalawi
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Zhenkai Zhao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, United Kingdom
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Qing Xiao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, United Kingdom.
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
6
|
Bonilha VL, Bell BA, Rayborn ME, Yang X, Kaul C, Grossman GH, Samuels IS, Hollyfield JG, Xie C, Cai H, Shadrach KG. Loss of DJ-1 elicits retinal abnormalities, visual dysfunction, and increased oxidative stress in mice. Exp Eye Res 2015. [PMID: 26215528 DOI: 10.1016/j.exer.2015.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DJ-1/PARK7 mutations or deletions cause autosomal recessive early onset Parkinson's disease (PD). Thus, DJ-1 protein has been extensively studied in brain and neurons. PD patients display visual symptoms; however, the visual symptoms specifically attributed to PD patients carrying DJ-1/PARK7 mutations are not known. In this study, we analyzed the structure and physiology of retinas of 3- and 6-month-old DJ-1 knockout (KO) mice to determine how loss of function of DJ-1 specifically contributes to the phenotypes observed in PD patients. As compared to controls, the DJ-1 KO mice displayed an increase in the amplitude of the scotopic ERG b-wave and cone ERG, while the amplitude of a subset of the dc-ERG components was decreased. The main structural changes in the DJ-1 KO retinas were found in the outer plexiform layer (OPL), photoreceptors and retinal pigment epithelium (RPE), which were observed at 3 months and progressively increased at 6 months. RPE thinning and structural changes within the OPL were observed in the retinas in DJ-1 KO mice. DJ-1 KO retinas also exhibited disorganized outer segments, central decrease in red/green cone opsin staining, decreased labeling of ezrin, broader distribution of ribeye labeling, decreased tyrosine hydroxylase in dopaminergic neurons, and increased 7,8-dihydro-8-oxoguanine-labeled DNA oxidation. Accelerated outer retinal atrophy was observed in DJ-1 KO mice after selective oxidative damage induced by a single tail vein injection of NaIO3, exposing increased susceptibility to oxidative stress. Our data indicate that DJ-1-deficient retinas exhibit signs of morphological abnormalities and physiological dysfunction in association with increased oxidative stress. Degeneration of RPE cells in association with oxidative stress is a key hallmark of age-related macular degeneration (AMD). Therefore, in addition to detailing the visual defects that occur as a result of the absence of DJ-1, our data is also relevant to AMD pathogenesis.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary E Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoping Yang
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charlie Kaul
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory H Grossman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ivy S Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Joe G Hollyfield
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chengsong Xie
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Karen G Shadrach
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
|
8
|
Al-Serwi RH, Ghoneim FM. The impact of vitamin E against acrylamide induced toxicity on skeletal muscles of adult male albino rat tongue: Light and electron microscopic study. J Microsc Ultrastruct 2015; 3:137-147. [PMID: 30023192 PMCID: PMC6014282 DOI: 10.1016/j.jmau.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/08/2015] [Indexed: 01/21/2023] Open
Abstract
Acrylamide, one of the major environmental public health problems, results from its increased accumulation in the process of cooking food materials. This study aimed to demonstrate the light and electron microscopic structural effects of acrylamide on the skeletal muscle fibers of adult male albino rat tongue and to investigate the possible protective effect of vitamin E co-administration. Thirty adult male albino Sprague-Dawley rats were divided into 3 groups, each group included 10 rats. Group I (control), group II which was subdivided into two equal subgroups: subgroup IIa: included 5 rats that received acrylamide orally once daily for 20 days. Subgroup IIb: included 5 rats that received acrylamide orally once daily for 40 days. Group III was also subdivided into two equal subgroups: subgroup IIIa: included 5 rats that received acrylamide and vitamin E orally once daily for 20 days. Subgroup IIIb: included 5 rats that received acrylamide and vitamin E orally once daily for 40 days. At the end of the experiment the tongue was dissected out for histological and electron microscopic studies, another muscle sample was homogenized and processed for biochemical estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light microscopic study of tongue skeletal muscles in acrylamide exposed animals revealed abnormal wavy course and splitting of the muscle fibers with fatty infiltration in between. Moreover, pyknosis and remnants of nuclei were detected. EM revealed marked aggregation of mitochondria of different size and shape with giant cells formation, and partial loss of myofilaments. There were statistically significant increase in MDA and decrease in TAC indicating oxidative stress in acrylamide administrated groups (group II) than the control group which increased by prolonged duration (subgroup IIb versus subgroup IIa, p < 0.0001). This oxidative stress could explain the histological changes in tongue muscles of acrylamide exposed rats. Co-administration of vitamin E with acrylamide ameliorated most of the above mentioned histological changes in the animals used and signs of improvement that became better with prolonged administration of it (subgroup IIIb versus subgroup IIIa, p < 0.0001) were detected. It could be concluded that, chronic exposure to acrylamide might lead to skeletal muscle damage in rat tongue which becomes worth with prolonged duration of exposure. Acrylamide induced oxidative stress is the implicated mechanism of such histological changes. This toxic effect of acrylamide could be minimized when vitamin E is given concomitantly with it by its antioxidant effect.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Egypt
| | - Fatma M Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
9
|
Ali MA, Aly EM, Elawady AI. Effectiveness of selenium on acrylamide toxicity to retina. Int J Ophthalmol 2014; 7:614-20. [PMID: 25161930 DOI: 10.3980/j.issn.2222-3959.2014.04.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/03/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the hematological parameters, biochemical and electrophysiological role of acrylamide (ACR) in the retina and to assess whether selenium (Se) has protective potential in experimental oral intoxication with ACR. METHODS Sixty Wistar age matched-albino rats (3mo) weighing 195-230 g comprised of both sex were divided into 4 groups. Group I served as the control one in which animals take saline; group II was animals administrated ACR in dose of 15 mg/kg body weight per day for 28d; group III was animals received ACR then additionally Se (0.1 mg/kg body weight) for 28d; and group IV was animals received Se only (0.1 mg/kg body weight) for 28d. Blood analysis and serum trace element levels (Fe, Cu, and Zn) were measured. The electroretinogram (ERG) was recorded, the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) in the retinal tissues were determined. Moreover the regulation of ion channels such as calcium, sodium and potassium were studied. All measurements were done for all groups after 28d. RESULTS Administration of ACR in group II caused a significant decrease (P<0.05) in hemoglobin (Hb), red blood cells (RBCs), hematocrit (HCT), white blood cells (WBCs) and lymphocyte of rats. A significant decrease (P<0.05) in Zn level, and alkaline phosphatase enzyme was observed compared to control. ERG which is a reflection of the electric activity in the retina; a- and-b wave amplitudes in ACR group had a reduction of 40% and 20% respectively. These changes accompanied by significant increases (P<0.05) in MDA level in the ACR group, in contrast with GSH-Px which is significant decreased (P<0.05). Moreover sodium and calcium were significant increased but potassium was significant decreased (P<0.05) compared to control group. There were no significant differences between group III (treated with Se) and control in all hematological parameter. Also serum trace elements levels (Cu, Fe and Zn), alkaline phosphatase enzyme and electric activity of the retina didn't change compared to control due to Se treatment. CONCLUSION This study provides evidence for the protective effect of Se on acrylamide induced toxicity by reducing oxidative stress.
Collapse
Affiliation(s)
- Mervat Ahmed Ali
- Biophysics and Laser Science Unit, Department of Visual Science, Research Institute of Ophthalmology, Giza 12511, Egypt
| | - Eman Mohamed Aly
- Biophysics and Laser Science Unit, Department of Visual Science, Research Institute of Ophthalmology, Giza 12511, Egypt
| | - Amal Ibrahim Elawady
- Biophysics and Laser Science Unit, Department of Visual Science, Research Institute of Ophthalmology, Giza 12511, Egypt
| |
Collapse
|
10
|
Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014; 3:9. [PMID: 24847438 PMCID: PMC4028099 DOI: 10.1186/2047-9158-3-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review summarizes both the animal and human studies describing various environmental stimuli to which an individual or an animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are suggested for effective intervention.
Collapse
|