1
|
C.H. S, M B, A P, Naik HR, Naik NM, Rao SN, Moussa IM, Alsubki RA, Ullah F, Elansary HO, B K. Investigation on the insecticidal activities of cyanobacterial extracts as an alternative source for the management of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Heliyon 2024; 10:e29060. [PMID: 38623187 PMCID: PMC11016625 DOI: 10.1016/j.heliyon.2024.e29060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
The Spodoptera frugiperda is a notorious pest with a broad host range. It severely damages crops, mainly in areas of the globewhere maize and sorghum are grown. The pest is difficult to control due to its adaptive nature and resistance to several insecticides available in the market. So, an identification of the alternative strategy is the prime important in the present context. Insecticidal activities of cyanobacterial extracts were evaluated in the laboratory as a biocomponent against S. frugiperda. The crude extracts of Nostoc muscorum and Spirulina sp. were prepared by using ethanol, methanol and petroleum ether solvents. Soxhlet apparatus was used for extraction. S. frugiperda larvae in their second instar were given access to fragments of maize leaf that had been treated with various cyanobacterial extracts. The findings displayed that the petroleum ether extract of N. muscorum had the lowest LC50 value of 155.22 ppm, followed by petroleum ether extracts of Spirulina, ethanol extract of N. Muscorum, methanol extract of N. muscorum, ethanol and methanol extract of Spirulina with an LC50 values of 456.02, 710, 780, 1050 and 1070 ppm respectively. Later, the effect of LC50 values on many biological parameters like the larval duration and pupal stages, the percentage of pupation, the weight of the pupal stage, the malformation of the pupal and adult stages, adult emergence percentage, fertility and the longevity of the male and female adult stages of S. frugiperda was examined. The gas chromatography-mass spectrometry (GC-MS) was used to analyse the crude extract to identify the bioactive components that were responsible for the insecticidal properties. The major compounds detected were diethyl phthalate (19.87 %), tetradecane (5.03%), hexadecanoic acid, ethyl ester (4.10 %), dodecane (4.03%), octadecane (3.72%), octadecanoic acid, methyl ester (3.40 %), ethyl oleate (3.11 %), methyl ester. octadecenoic acid (3.04 %), heptadecane (3.04 %) and phytol (3.02 %). The presence of several bioactive chemicals in the cyanobacterial extracts may be the reason for their insecticidal actions, thus it can be used as an alternative and new source to combat fall armyworm and other crop pests.
Collapse
Affiliation(s)
- Sharanappa C.H.
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - Bheemanna M
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Prabhuraj A
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Harischandra R. Naik
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Nagaraj M. Naik
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Saroja N. Rao
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Saudi Arabia
| | - Fazal Ullah
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kariyanna B
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
2
|
Bishoyi AK, Mandhata CP, Sahoo CR, Paidesetty SK, Padhy RN. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1347-1375. [PMID: 37712972 DOI: 10.1007/s00210-023-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The Oscillatoria sp., a blue-green alga or cyanobacterium, consists of about 305 species distributed globally. Cyanobacteria are prokaryotes possessing several secondary metabolites that have industrial and biomedical applications. Particularly, the published reviews on Oscillatoria sp. have not recorded any pharmacology, or possible details, while the detailed chemical structures of the alga are reported in the literature. Hence, this study considers pertinent pharmacological activities of the plethora of bioactive components of Oscillatoria sp. Furthermore, the metallic nanoparticles produced with Oscillatoria sp. were documented for plausible antibacterial, antifungal, antioxidant, anticancer, and cytotoxic effects against several cultured human cell lines. The antimicrobial activities of solvent extracts of Oscillatoria sp. and the biotic activities of its derivatives, pyridine, acridine, fatty acids, and triazine were structurally described in detail. To understand the connotations with research gaps and provide some pertinent prospective suggestions for further research on cyanobacteria as potent sources of pharmaceutical utilities, attempts were documented. The compounds of Oscillatoria sp. are a potent source of secondary metabolites that inhibit the cancer cell lines, in vitro. It could be expected that by holistic exploitation, the natural Oscillatoria products, as the source of chemical varieties and comparatively more potent inhibitors, would be explored against pharmacological activities with the integument of SARs.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
3
|
Bishoyi AK, Lakra A, Mandhata CP, Sahoo CR, Padhy RN. Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection. Curr Microbiol 2023; 81:35. [PMID: 38063889 DOI: 10.1007/s00284-023-03535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Antibiotic resistance of bacteria is causing clinical and public health concerns that are challenging to treat. Infections are becoming more common in the present era, and patients admitted to hospitals often have drug-resistant bacteria that can spread nosocomial infections. Urinary tract infections (UTIs) are among the most common infectious diseases affecting all age groups. There has been an increase in the proportion of bacteria that are resistant to multiple drugs. Herein is a comprehensive update on UTI-associated diseases: cystitis, urethritis, acute urethral syndrome, pyelonephritis, and recurrent UTIs. Further emphasis on the global statistical incidence and recent advancement of the role of natural products in treating notorious infections are described. This updated compendium will inspire the development of novel phycocompounds as the prospective antibacterial candidate.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Anjali Lakra
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
4
|
Zribi I, Zili F, Ben Ali R, Masmoudi MA, Sayadi S, Ben Ouada H, Chamkha M. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater. ENVIRONMENTAL RESEARCH 2023:116342. [PMID: 37290616 DOI: 10.1016/j.envres.2023.116342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
In the context of climate change leading to water scarcity for many people in the world, the treatment of municipal wastewater becomes a necessity. However, the reuse of this water requires secondary and tertiary treatment processes to reduce or eliminate a load of dissolved organic matter and various emerging contaminants. Microalgae have shown hitherto high potential applications of wastewater bioremediation thanks to their ecological plasticity and ability to remediate several pollutants and exhaust gases from industrial processes. However, this requires appropriate cultivation systems allowing their integration into wastewater treatment plants at appropriate insertion costs. This review aims to present different open and closed systems currently used in the treatment of municipal wastewater by microalgae. It provides an exhaustive approach to wastewater treatment systems using microalgae, integrating the most suitable used microalgae species and the main pollutants present in the treatment plants, with an emphasis on emerging contaminants. The remediation mechanisms as well as the capacity to sequester exhaust gases were also described. The review examines constraints and future perspectives of microalgae cultivation systems in this line of research.
Collapse
Affiliation(s)
- Ines Zribi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| | - Fatma Zili
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Rihab Ben Ali
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Mohamed Ali Masmoudi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Hatem Ben Ouada
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| |
Collapse
|
5
|
Afzal S, Yadav AK, Poonia AK, Choure K, Yadav AN, Pandey A. Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia (Bratisl) 2023; 78:291-305. [PMID: 36159744 PMCID: PMC9486765 DOI: 10.1007/s11756-022-01207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Algae are defined as photosynthetic organisms that demonstrate a wide range of adaptability to adverse environmental conditions like temperature extremes, photo-oxidation, high or low salinity, and osmotic stress. Algae are primarily known to produce large amounts of secondary metabolite against various kinds of pathogenic microbes. Among these algae, micro and microalgae of river, lake, and algae of oceanic origin have been reported to have antimicrobial activity against the bacteria and fungi of pathogenic nature. Various polar and non- polar extracts of micro- and macro algae have been used for the suppression of these pathogenic fungi. Apart from these, certain algal derivatives have also been isolated from these having antibacterial and antifungal potential. Among the bioactive molecules of algae, polysaccharides, sulphated polysaccharides, phyco-cyanobilins polyphenols, lectins, proteins lutein, vitamin E, B12 and K1, peptides, polyunsaturated fatty acids and pigments can be highlighted. In the present review, we will discuss the biological activity of these derived compounds as antifungal/ antibacterial agents and their most promising applications. A brief outline is also given for the prospects of these isolated phytochemicals and using algae as therapeutic in the dietary form. We have also tried to answer whether alga-derived metabolites can serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infections too.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Alok Kumar Yadav
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Anuj Kumar Poonia
- University Institute of Biotechnology , Chandigarh University, Chandigarh, Punjab India
| | - Kamlesh Choure
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| | - Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib Sirmour, HP India
| | - Ashutosh Pandey
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| |
Collapse
|
6
|
Al Naim HM, El Semary N. Laser Treatment Increases the Antimicrobial Efficacy of Cyanobacterial Extracts against Staphylococcusaureus (SA) and Methicillin-resistantStaphylococcus aureus (MRSA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13305. [PMID: 36293886 PMCID: PMC9603216 DOI: 10.3390/ijerph192013305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) are multidrug-resistant bacterial pathogens. A novel approach needs to be followed to combat these pathogens in an ecofriendly manner. Cyanobacterial extracts were previously proven to be affective as antimicrobial agents. To capitalize on this, laser treatments were used to increase their antimicrobial efficacy. Two cyanobacterial strains isolated from Al-Ahsa were identified using molecular methods. Their aqueous extracts were used in the antimicrobial bioassay for these two bacterial pathogens. The first group of aqueous extracts were exposed directly to laser treatment and used in antibacterial bioassay. In parallel, the cyanobacterial biomass of the two isolates was exposed to the laser, then aqueous extracts were prepared. The third group of extracts were not exposed to the laser and were used as a control. Time and distance were the factors tested as they affected the dose of the laser, both individually and in combination. In addition, accessory pigment estimation in extracts before and after laser exposure of extracts was also determined. The two cyanobacterial strains were identified as Thermoleptolyngbya sp. and Leptolyngbya sp. and the molecular analysis also confirmed the identity of pathogenic bacteria. The untreated cyanobacterial aqueous extracts had little effect against the two bacterial strains. In contrast, the extract directly exposed to the laser was significantly more effective, with an inhibition zone of 22.0 mm in the case of a time of 32 min and distance of 10 cm against S. aureus. Accessory pigment composition increased in extracts directly exposed to the laser. This is the first case report on the effect of lasers on enhancing the antimicrobial profile of cyanobacterial extracts against SA and MRSA bacterial pathogens, as well as enhancing accessory pigment content. The laser dose that was most effective was that of 32 min time and 10 cm distance of Thermoleptolyngbya sp. extract directly exposed to the laser, which highlights the importance of time for increasing the laser dose and consequently increasing its antimicrobial impact.
Collapse
Affiliation(s)
- Haifa M. Al Naim
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nermin El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
| |
Collapse
|
7
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
8
|
Krohn I, Menanteau‐Ledouble S, Hageskal G, Astafyeva Y, Jouannais P, Nielsen JL, Pizzol M, Wentzel A, Streit WR. Health benefits of microalgae and their microbiomes. Microb Biotechnol 2022; 15:1966-1983. [PMID: 35644921 PMCID: PMC9249335 DOI: 10.1111/1751-7915.14082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro‐ and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.
Collapse
Affiliation(s)
- Ines Krohn
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Jeppe Lund Nielsen
- Department for Chemistry and Bioscience Aalborg University Aalborg Denmark
| | - Massimo Pizzol
- Department of Planning Aalborg University Aalborg Denmark
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| |
Collapse
|
9
|
Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022; 41:4219-4252. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria (blue-green algae) are Gram-negative photosynthetic eubacteria that are found everywhere. This largest group of photosynthetic prokaryotes is rich in structurally novel and biologically active compounds; several of which have been utilized as prospective drugs against cancer and other ailments, as well. Consequently, the integument of nanoparticles-synthetic approaches in cyanobacterial extracts should increase pharmacological activity. Moreover, silver nanoparticles (AgNPs) are small materials with diameters below 100 nm that are classified into different classes based on their forms, sizes, and characteristics. Indeed, the biosynthesized AgNPs are generated with a variety of organisms, algae, plants, bacteria, and a few others, for the medicinal purposes, as the bioactive compounds of curio and some proteins from cyanobacteria have the potentiality in the treatment of a wide range of infectious diseases. The critical focus of this review is on the antimicrobial, antioxidant, and anticancer properties of cyanobacteria. This would be useful in the pharmaceutical industries in the future drug development cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
In Vitro Antibacterial Activity of Marine Microalgae Extract against Vibrio harveyi. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Marine microalgae may produce antibacterial substances. At the exponential phase of growth, four species of marine microalgae were examined for their potential to create secondary metabolites that limit the growth of Vibrio harveyi: Nannochloropsis oceanica, Chaetoceros gracilis, Isochrysis sp., and Thalassiosira weissflogii. V. harveyi is a pathogenic bacteria that can cause severe mortality and loss in aquaculture. Disc diffusion assay and co-culture assay were used to determine antibacterial activity. On TSA % NaCl media, the disc impregnated with microalgae and extracted with ethanol, methanol, saline water, and dimethyl sulfoxide (DMSO) was tested against V. harveyi at concentrations of 1.0 × 105, 106 and 107 CFU mL−1. The disc diffusion assay revealed that N. oceanica extracted with ethanol had the largest inhibitory zone against V. harveyi. Meanwhile, only N. oceanica, Isochrysis sp., and T. weissflogii reduced the growth of V. harveyi (105 CFU mL−1) in the co-culture assay (p < 0.05). The current findings reveal that the hydrophilic chemicals in microalgae extract have antibiotic activity against the highly virulent V. harveyi, which causes vibriosis, a serious disease in farmed fish and aquaculture cultivation around the world.
Collapse
|
11
|
Mu R, Jia Y, Ma G, Liu L, Hao K, Qi F, Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1217-1230. [PMID: 33305497 DOI: 10.1002/wer.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | | | - Kaixuan Hao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
12
|
Ghosh S, Gandhi M, van Hullebusch ED, Das AP. Proteomic insights into Lysinibacillus sp.-mediated biosolubilization of manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40249-40263. [PMID: 33011949 DOI: 10.1007/s11356-020-10863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
There has been alarming depletion of manganese (Mn) reserves owing to the ongoing extensive mining operations for catering the massive industrial demand of this element. Moreover, the mining operations have been leading to the generation of Mn-rich waste, thereby contaminating both terrestrial and aquatic bodies. The current scenario necessitates the development of alternative processes for bioremediation as well as economic recovery of Mn from mining wastes. The present investigation aims to report the bioleaching of Mn by Lysinibacillus sp. from mining waste residues in the context of mine waste remediation. Results confirmed that the native isolate had a high Mn biosolubilization potential with a solubilizing efficiency of 84% at the end of a 21-day study under optimized conditions of pulp density 2% (< 150-μm particle size), pH 6.5, and temperature 30 °C. Fourier transform infrared spectroscopy (FTIR) studies followed by liquid chromatography mass spectrometry (LC-MS) analysis were used to ascertain the change in microbial protein conformation, configuration, and protein identification. The results revealed the expression of heat shock proteins (HSP) from the family HSP which is predominantly expressed in bacteria during stress conditions. This study represents the application of native bacterial strain in Mn biosolubilization. We foresee the utility of proteomics-based studies to provide a methodological framework to the underlying mechanism of metal solubilization, thereby facilitating the two-tier benefit of recovery of Mn from alternative sources as well as bioremediation of waste having high manganese content.
Collapse
Affiliation(s)
- Shreya Ghosh
- Amity Institute of Biotechnology, Amity University, New Town, Kolkata, 700135, India
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay, Mumbai, India
| | - Eric D van Hullebusch
- Institut de physique du globe de Paris, CNRS, Université de Paris, F-75005, Paris, France
| | - Alok Prasad Das
- Department of Life Science, Rama Devi Women's University, Bhoinagar P.O, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
13
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
14
|
Lloyd C, Tan KH, Lim KL, Valu VG, Fun SMY, Chye TR, Mak HM, Sim WX, Musa SL, Ng JJQ, Bte Nordin NS, Bte Md Aidzil N, Eng ZYW, Manickavasagam P, New JY. Identification of microalgae cultured in Bold's Basal medium from freshwater samples, from a high-rise city. Sci Rep 2021; 11:4474. [PMID: 33627771 PMCID: PMC7904821 DOI: 10.1038/s41598-021-84112-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed at exploring microalgal heterogeneity from fresh water samples collected from inland water bodies in the heavily built city of Singapore. Culturable pure isolates (n = 94) were subject to an in-house microalgal DNA extraction method and LSU rDNA sequencing. Isolates were analysed for their predominance and distribution. A total of 17 different algal genera were identified (H = 2.8, EH = 0.6), of which Scenedesmus spp. and Chlorella spp. constituted 27.5% and 21.3% of isolates respectively, followed by Micractinium spp. (18.8%) and Chlamydomonas spp. (12.5%). We also report 16 new microalgal strains from this region. The data is important from an ecological and biotechnological perspective.
Collapse
Affiliation(s)
- Charmaine Lloyd
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore. .,School of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, 3122, Australia.
| | - Kai Heng Tan
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Kar Leong Lim
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Vimala Gana Valu
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Sarah Mei Ying Fun
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Teng Rong Chye
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Hui Min Mak
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Wei Xiong Sim
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Sarah Liyana Musa
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Joscelyn Jun Quan Ng
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Nazurah Syazana Bte Nordin
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Nurhazlyn Bte Md Aidzil
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Zephyr Yu Wen Eng
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Punithavathy Manickavasagam
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Jen Yan New
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| |
Collapse
|
15
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 2020; 40:3560-3580. [PMID: 33200676 DOI: 10.1080/07391102.2020.1848632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel lectin was purified from newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1 using affinity chromatography with a molecular weight of 120 kDa under native-PAGE and 30 kDa on reducing-PAGE, represented tetramer nature of this lectin. Oscillatorial lectin showed stability at 60 °C for 30 min, pH-dependent, with the highest activities over the pH range of 6-8, and required zinc ions to express its full activity. Oscillatorial lectin is a glycan-binding protein with a neutral carbohydrate content of 7.0% as evaluated by the phenol-sulfuric acid method. Polyols and α- glycosides polymer of mannose sugar or sugars alcohol were completely inhibited oscillatorial lectin with MIC of 0.195 mM, while β-glycosides sugars did not show any inhibition effect. The oscillatorial lectin has anti-proliferative activity against Huh-7 and MCF-7 cancer cells and inhibited their proliferation with EC50 values of 106.75 µg/ml and 254.14 µg/ml, respectively. Besides the anticancer effect, oscillatorial lectin also has potent antiviral activity against HSV-1 in a dose-dependent manner via virions neutralization and inhibition of viral replication with IC50 values of 90.95 ng/ml and 131.3 ng/ml, respectively. The unique carbohydrate affinity of oscillatorial lectin provides insight into its use as a promising candidate in many biotechnological applications, like fighting viral infection and combating cancer disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
16
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2020; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
17
|
Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03698-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Fuentes-Tristan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 201:111684. [PMID: 31733505 DOI: 10.1016/j.jphotobiol.2019.111684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
Since the beginning of life on Earth, cyanobacteria have been exposed to natural ultraviolet-A radiation (UV-A, 315-400 nm) and ultraviolet-B radiation (UV-B, 280-315 nm), affecting their cells' biomolecules. These photoautotrophic organisms have needed to evolve to survive and thus, have developed different mechanisms against ultraviolet radiation. These mechanisms include UVR avoidance, DNA repair, and cell protection by producing photoprotective compounds like Scytonemin, carotenoids, and Mycosporine-like amino acids (MAAs). Lyngbya marine species are commercially important due to their secondary metabolites that show a range of biological activities including antibacterial, insecticidal, anticancer, antifungal, and enzyme inhibitor. The main topic in this review covers the Lyngbya sp., a cyanobacteria genus that presents photoprotection provided by the UV-absorbing/screening compounds such as MAAs and Scytonemin. These compounds have considerable potentialities to be used in the cosmeceutical, pharmaceutical, biotechnological and biomedical sectors and other related manufacturing industries with an additional value of environment friendly in nature. Scytonemin has UV protectant, anti-inflammatory, anti-proliferative, and antioxidant activity. MAAs act as sunscreens, provide additional protection as antioxidants, can be used as UV protectors, activators of cell proliferation, skin-care products, and even as photo-stabilizing additives in paints, plastics, and varnishes. The five MAAs identified so far in Lyngbya sp. are Asterina-330, M-312, Palythine, Porphyra-334, and Shinorine are capable of dissipating absorbed radiation as harmless heat without producing reactive oxygen species.
Collapse
Affiliation(s)
- Susana Fuentes-Tristan
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
19
|
Santhosh S, Manivannan N, Ragavendran C, Mathivanan N, Natarajan D, Hemalatha N, Dhandapani R. Growth optimization, free radical scavenging and antibacterial potential of
Chlorella
sp. SRD3 extracts against clinical isolates. J Appl Microbiol 2019; 127:481-494. [DOI: 10.1111/jam.14336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Affiliation(s)
- S. Santhosh
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Manivannan
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai Tamil Nadu India
| | - C. Ragavendran
- Department of Biotechnology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Mathivanan
- Centre for Advanced Studies in Botany University of Madras, Guindy Campus Chennai Tamil Nadu India
| | - D. Natarajan
- Department of Biotechnology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - N. Hemalatha
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| | - R. Dhandapani
- Department of Microbiology, School of Biosciences Periyar University Salem Tamil Nadu India
| |
Collapse
|
20
|
Schuelter AR, Kroumov AD, Hinterholz CL, Fiorini A, Trigueros DEG, Vendruscolo EG, Zaharieva MM, Módenes AN. Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem 2017; 235:34-44. [PMID: 28554644 PMCID: PMC7131516 DOI: 10.1016/j.foodchem.2017.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
Algae are a valuable and never-failing source of bioactive compounds. The increasing efforts to use ingredients that are as natural as possible in the formulation of innovative products has given rise to the introduction of macro and microalgae in food industry. To date, scarce information has been published about algae ingredients as antimicrobials in food. The antimicrobial potential of algae is highly dependent on: (i) type, brown algae being the most effective against foodborne bacteria; (ii) the solvent used in the extraction of bioactive compounds, ethanolic and methanolic extracts being highly effective against Gram-positive and Gram-negative bacteria; and (iii) the concentration of the extract. The present paper reviews the main antimicrobial potential of algal species and their bioactive compounds in reference and real food matrices. The validation of the algae antimicrobial potential in real food matrices is still a research niche, being meat and bakery products the most studied substrates.
Collapse
Affiliation(s)
- M C Pina-Pérez
- Centro Avanzado de Microbiología de Alimentos (CAMA) - Universitat Politècnica de Valencia (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Rivas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| | - A Martínez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| | - D Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
22
|
Silkina A, Nelson GD, Bayliss CE, Pooley CL, Day JG. Bioremediation efficacy-comparison of nutrient removal from an anaerobic digest waste-based medium by an algal consortium before and after cryopreservation. JOURNAL OF APPLIED PHYCOLOGY 2017; 29:1331-1341. [PMID: 28572708 PMCID: PMC5429893 DOI: 10.1007/s10811-017-1066-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/07/2023]
Abstract
An algal consortium was isolated from an integrated steelmaking site at TATA Steel Strip Products Ltd. in Port Talbot, UK, and its bioremediation capacity tested. Excellent "bioremediation" was observed when the mixed culture was "applied" to diluted effluent from an enhanced anaerobic digestion plant at Dŵr Cymru Welsh Water at Port Talbot, UK. After 5 days of cultivation in a 600-L photobioreactor, 99% of the total nitrogen (initial level, 4500 μmol L-1) and total phosphorus (initial level, 690.4 μmol L-1) were removed from the waste stream. The consortium was deposited in the Culture Collection of Algae and Protozoa (CCAP), an international depository authority for microalgal patents, as CCAP 293/1. This material has been successfully cryopreserved using a two-step cryopreservation protocol with dimethyl sulphoxide (5% v/v) used as a cryoprotectant. On recovery of samples after 3 months storage at -196 °C, the specific bioremediation activity of the revived consortium was tested. The capacity of the revived culture to bioremediate effluent was not significantly different (p < 0.05) from a non-cryopreserved control, with 99% of total nitrogen and phosphorus remediated by day 4. Although non-axenic algal cultures have previously been cryopreserved, this is the first report of the successful cryopreservation of mixed algal consortium, with validation of its ability to bioremediate after thawing comparing non-cryopreserved cultures with a revived post-thaw algal consortium. The study also highlights the need to ensure the long-term security and the requirement to validate the functionality of conserved inocula with biotechnological/bioremediation potential.
Collapse
Affiliation(s)
- Alla Silkina
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea, SA2 8PP UK
| | - Graham D. Nelson
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea, SA2 8PP UK
| | - Catherine E. Bayliss
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea, SA2 8PP UK
| | - Craig L. Pooley
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea, SA2 8PP UK
| | - John G. Day
- The Culture Collection for Algae and Protozoa, Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA UK
| |
Collapse
|
23
|
Li A, Zhang L, Zhao ZY, Ma SS, Wang M, Liu PH. Prescreening, identification and harvesting of microalgae with antibacterial activity. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Chowdhury MMH, Kubra K, Hossain MB, Mustafa MG, Jainab T, Karim MR, Mehedy ME. Screening of Antibacterial and Antifungal Activity of Freshwater and Marine Algae as a Prominent Natural Antibiotic Available in Bangladesh. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.828.833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
de Morais MG, Vaz BDS, de Morais EG, Costa JAV. Biologically Active Metabolites Synthesized by Microalgae. BIOMED RESEARCH INTERNATIONAL 2015; 2015:835761. [PMID: 26339647 PMCID: PMC4538420 DOI: 10.1155/2015/835761] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/26/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022]
Abstract
Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.
Collapse
Affiliation(s)
- Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Etiele Greque de Morais
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
26
|
Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, Ninova MS, Kussovski VK. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12122] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hristo M. Najdenski
- The Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 26; 1113; Sofia; Bulgaria
| | - Liliana G. Gigova
- Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 21; 1113; Sofia; Bulgaria
| | - Ivan I. Iliev
- Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 21; 1113; Sofia; Bulgaria
| | - Plamen S. Pilarski
- Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 21; 1113; Sofia; Bulgaria
| | - Jaromir Lukavský
- Institute of Botany; Academy of Sciences of Czech Republic; Dukelská 135; CZ-379 84; Třeboň; Czech Republic
| | - Iva V. Tsvetkova
- The Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 26; 1113; Sofia; Bulgaria
| | - Mariana S. Ninova
- The Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 26; 1113; Sofia; Bulgaria
| | - Vesselin K. Kussovski
- The Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Acad. Georgi Bonchev Str. 26; 1113; Sofia; Bulgaria
| |
Collapse
|
27
|
Epidemiology of dermatophytosis in and around Tiruchirapalli, Tamilnadu, India. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|