1
|
Yaya-Lancheros N, Polo-Terán LJ, Faccini-Martínez ÁA, Hidalgo-Díaz M. [Epidemiological surveillance system for the acute febrile syndrome in Villeta, Colombia]. Rev Salud Publica (Bogota) 2023; 21:340-348. [PMID: 36753179 DOI: 10.15446/rsap.v21n3.56122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To generate a preliminary proposal of an integral surveillance system for the acute febrile syndrome in Villeta municipality, Cundinamarca department, with the goal to establish a collection processes and data capture in the presentation of human and animal cases. MATERIALS AND METHODS A database was generated from a cross-sectional retrospective study of 40 sheets of mandatory reporting for suspected dengue patients collected during October 2011 and March 2013 from Hospital Salazar of Villeta. These data were analyzed by the Epiinfo 7 program. Also, because of the evidence of leptospirosis and rickettsial circulation in this municipality and whereas these etiologies are zoonotic, an adaptation was made regarding the event in dogs. These results allowed to design the proposed system, including operational surveillance case definitions for febrile etiologies, action algorithms and reporting tools. RESULTS Sixty percent of people who consulted for febrile syndrome belonged to the county seat. 30% of patients were under 10 years. Fever (98%), myalgia (85%), headache (75%) and arthralgia (65%) were the symptoms reported with more frequency. The largest number of cases occurred in September, 2012. The proposed system of syndromic surveillance will strengthen surveillance considering four components: human, animal, community and environmental by facilitating the opportune identification and treatment of cases of acute febrile illnesses. CONCLUSION The syndromic surveillance system allows to relate comprehensively febrile illnesses with common signs, making the reporting process more efficient.
Collapse
Affiliation(s)
- Néstor Yaya-Lancheros
- NY: MDV. Facultad de Medicina, Veterinaria, y de Zootecnia, Universidad Nacional de Colombia. Bogotá, Colombia.
| | - Luis J Polo-Terán
- LP: MDV. M. Sc. Salud Pública, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia. Bogotá, Colombia.
| | - Álvaro A Faccini-Martínez
- AF: M.D, M.Sc. Ph.D en Enfermedades Infecciosas. Comité de Medicina Tropical, Zoonosis y Medicina del Viajero, Asociación Colombiana de Infectología. Bogotá, Colombia.
| | - Marylin Hidalgo-Díaz
- MH: Bacterióloga. M. Sc. Ciencias. Ph.D. en Ciencias Biológicas. Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana. Bogotá, Colombia.
| |
Collapse
|
2
|
Zhou X, Lee EWJ, Wang X, Lin L, Xuan Z, Wu D, Lin H, Shen P. Infectious diseases prevention and control using an integrated health big data system in China. BMC Infect Dis 2022; 22:344. [PMID: 35387590 PMCID: PMC8984075 DOI: 10.1186/s12879-022-07316-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 03/28/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Yinzhou Center for Disease Prevention and Control (CDC) in China implemented an integrated health big data platform (IHBDP) that pooled health data from healthcare providers to combat the spread of infectious diseases, such as dengue fever and pulmonary tuberculosis (TB), and to identify gaps in vaccination uptake among migrant children. METHODS IHBDP is composed of medical data from clinics, electronic health records, residents' annual medical checkup and immunization records, as well as administrative data, such as student registries. We programmed IHBDP to automatically scan for and detect dengue and TB carriers, as well as identify migrant children with incomplete immunization according to a comprehensive set of screening criteria developed by public health and medical experts. We compared the effectiveness of the big data screening with existing traditional screening methods. RESULTS IHBDP successfully identified six cases of dengue out of a pool of 3972 suspected cases, whereas the traditional method only identified four cases (which were also detected by IHBDP). For TB, IHBDP identified 288 suspected cases from a total of 43,521 university students, in which three cases were eventually confirmed to be TB carriers through subsequent follow up CT or T-SPOT.TB tests. As for immunization screenings, IHBDP identified 240 migrant children with incomplete immunization, but the traditional door-to-door screening method only identified 20 ones. CONCLUSIONS Our study has demonstrated the effectiveness of using IHBDP to detect both acute and chronic infectious disease patients and identify children with incomplete immunization as compared to traditional screening methods.
Collapse
Affiliation(s)
- Xudong Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Social & Family Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Edmund Wei Jian Lee
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, 31 Nanyang Link, WKWSCI Building, Singapore, 637718, Singapore
| | - Xiaomin Wang
- Institute of Social & Family Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leesa Lin
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong Special Administrative Region, China.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Ziming Xuan
- Department of Community Health Sciences, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
| | - Dan Wu
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hongbo Lin
- Yinzhou Center for Disease Prevention and Control, 1221 Xueshi Road, Ningbo, 315100, Zhejiang, China.
| | - Peng Shen
- Yinzhou Center for Disease Prevention and Control, 1221 Xueshi Road, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
3
|
Antoine-Moussiaux N, Vandenberg O, Kozlakidis Z, Aenishaenslin C, Peyre M, Roche M, Bonnet P, Ravel A. Valuing Health Surveillance as an Information System: Interdisciplinary Insights. Front Public Health 2019; 7:138. [PMID: 31263687 PMCID: PMC6585471 DOI: 10.3389/fpubh.2019.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
The economic evaluation of health surveillance systems and of health information is a methodological challenge, as for information systems in general. Main present threads are considering cost-effectiveness solutions, minimizing costs for a given technically required output, or cost-benefit analysis, balancing costs with economic benefits of duly informed public interventions. The latter option, following a linear command-and-control perspective, implies considering a main causal link between information, decision, action, and health benefits. Yet, valuing information, taking into account its nature and multiple sources, the modalities of its processing cycle, from production to diffusion, decentralized use and gradual building of a shared information capital, constitutes a promising challenge. This work proposes an interdisciplinary insight on the value of health surveillance to get a renewed theoretical framework integrating information and informatics theory and information economics. The reflection is based on a typological approach of value, basically distinguishing between use and non-use values. Through this structured discussion, the main idea is to expand the boundaries of surveillance evaluation, to focus on changes and trends, on the dynamic and networked structure of information systems, on the contribution of diverse data, and on the added value of combining qualitative and quantitative information. Distancing itself from the command-and-control model, this reflection considers the behavioral fundaments of many health risks, as well as the decentralized, progressive and deliberative dimension of decision-making in risk management. The framework also draws on lessons learnt from recent applications within and outside of health sector, as in surveillance of antimicrobial resistance, inter-laboratory networks, the use of big data or web sources, the diffusion of technological products and large-scale financial risks. Finally, the paper poses the bases to think the challenge of a workable approach to economic evaluation of health surveillance through a better understanding of health information value. It aims to avoid over-simplifying the range of health information benefits across society while keeping evaluation within the boundaries of what may be ascribed to the assessed information system.
Collapse
Affiliation(s)
- Nicolas Antoine-Moussiaux
- Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, Liege, Belgium
| | - Olivier Vandenberg
- Research Centre on Environmental and Occupational Health, School of Public Health - Université Libre de Bruxelles, Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences - University College London, London, United Kingdom
| | - Zisis Kozlakidis
- Division of Infection and Immunity, Faculty of Medical Sciences - University College London, London, United Kingdom
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Cécile Aenishaenslin
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Marisa Peyre
- ASTRE, Univ. Montpellier, CIRAD, Inra, Montpellier, France
| | - Mathieu Roche
- TETIS, Univ. Montpellier, AgroParisTech, CIRAD, CNRS, Irstea, Montpellier, France
- Department Environments and Societies, CIRAD, Montpellier, France
| | - Pascal Bonnet
- Department Environments and Societies, CIRAD, Montpellier, France
| | - André Ravel
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Adeola OA, Olugasa BO, Emikpe BO, Folitse RD. Syndromic survey and molecular analysis of influenza viruses at the human-swine interface in two West African cosmopolitan cities suggest the possibility of bidirectional interspecies transmission. Zoonoses Public Health 2019; 66:232-247. [PMID: 30680936 DOI: 10.1111/zph.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Influenza viruses are frequently transmitted between pigs and their handlers, and among pig handlers. However, reports on socio-environmental variables as potential risk factors associated with transmission of influenza in West African swine production facilities are very scarce. Syndromic survey for influenza was therefore conducted in Ibadan, Nigeria, and Kumasi, Ghana, in order to identify and elucidate selected socio-environmental variables that may contribute to the occurrence and distribution of influenza-like illness (ILI) among swine industry workers. In addition, molecular analyses were conducted to elucidate the nature of influenza viruses circulating at the human-swine interface in these cities and better understand the dynamics of their transmission. Influenza viruses were detected by type-specific and subtype-specific RT-PCR. Sequencing and phylogenetic analyses were carried out. Socio-environmental variables were tested by both univariable and multivariable regression methods for significance at p < 0.05. Three risk factors for ILI were identified in each city. These included "frequency of visit of pig handler to pig pen or lairage" (Ibadan: risk ratio [RR] = 1.54, 95% confidence interval [CI] = 1.36-1.79, p = 0.02; Kumasi: RR = 1.28, 95% CI = 1.11-1.71, p = 0.01) and "pig handler's awareness about biosecurity measures" (Ibadan: RR = 7.09, 95% CI = 2.36-21.32, p < 0.001; Kumasi: RR = 4.84, 95% CI = 1.98-11.80, p < 0.001). Influenza A(H1N1)pdm09 viruses, with M genes closely related to those which circulated among pigs in the two cities during the same period, were detected among Nigerian and Ghanaian pig industry workers. These findings suggest the possibility of bidirectional transmission of influenza at the human-swine interface in these cities and underscore the need for more extensive molecular studies. Risk factors identified may assist in the control of human-to-human and human-to-swine transmission of influenza in the West African swine industry.
Collapse
Affiliation(s)
- Oluwagbenga A Adeola
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Bingham University, Karu, Abuja, Nigeria
| | - Babasola O Olugasa
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin O Emikpe
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pathobiology, School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael D Folitse
- Department of Pathobiology, School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
5
|
Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health 2016; 16:1238. [PMID: 27931204 PMCID: PMC5146908 DOI: 10.1186/s12889-016-3893-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/30/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Emerging and re-emerging infectious diseases are a significant public health concern, and early detection and immediate response is crucial for disease control. These challenges have led to the need for new approaches and technologies to reinforce the capacity of traditional surveillance systems for detecting emerging infectious diseases. In the last few years, the availability of novel web-based data sources has contributed substantially to infectious disease surveillance. This study explores the burgeoning field of web-based infectious disease surveillance systems by examining their current status, importance, and potential challenges. METHODS A systematic review framework was applied to the search, screening, and analysis of web-based infectious disease surveillance systems. We searched PubMed, Web of Science, and Embase databases to extensively review the English literature published between 2000 and 2015. Eleven surveillance systems were chosen for evaluation according to their high frequency of application. Relevant terms, including newly coined terms, development and classification of the surveillance systems, and various characteristics associated with the systems were studied. RESULTS Based on a detailed and informative review of the 11 web-based infectious disease surveillance systems, it was evident that these systems exhibited clear strengths, as compared to traditional surveillance systems, but with some limitations yet to be overcome. The major strengths of the newly emerging surveillance systems are that they are intuitive, adaptable, low-cost, and operated in real-time, all of which are necessary features of an effective public health tool. The most apparent potential challenges of the web-based systems are those of inaccurate interpretation and prediction of health status, and privacy issues, based on an individual's internet activity. CONCLUSION Despite being in a nascent stage with further modification needed, web-based surveillance systems have evolved to complement traditional national surveillance systems. This review highlights ways in which the strengths of existing systems can be maintained and weaknesses alleviated to implement optimal web surveillance systems.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Public Health Science, School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, South Korea
| | - Youngtae Cho
- Department of Public Health Science, School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, South Korea
| | - Eunyoung Shim
- Department of Public Health Science, School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, South Korea
- Department of New Business, Samsung Fire and Marine Insurance, 14 Seocho-daero 74-gil, Seocho-gu, Seoul, South Korea
| | - Hyekyung Woo
- Department of Public Health Science, School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, South Korea
| |
Collapse
|