1
|
Mandal P, Chandra G. Casearia tomentosa fruit extracts exposed larvicidal activity and morphological alterations in Culex quinquefasciatus and Aedes albopictus under in vitro and semi field conditions. BMC Res Notes 2024; 17:6. [PMID: 38167220 PMCID: PMC10762963 DOI: 10.1186/s13104-023-06663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Mosquitoes are notorious insects that transmit a wide range of infectious diseases, including zika, malaria, chikungunya, filariasis, and dengue. The overuse and incorrect application of synthetic pesticides to control mosquitoes has resulted in resistance development and environmental contamination, both of which have had a negative impact on human health. To address this issue, the larvicidal and pupicidal potential of acetone extract from Casearia tomentosa fruits was investigated. The extract was evaluated in a lab setting against all larval instars and pupa of Culex quinquefasciatus and Aedes albopictus, as well as against third instar larvae in a semi-field condition. Purified compounds through TLC were also tested against 3rd instar larvae of both mosquito and non-target organisms. The FT-IR and GC-MS analyses were used to characterise the extract. Morphological aberration caused by the acetone extract was observed using FESEM. The anal gills and respiratory siphon of both mosquitoes showed significant deformation from their normal state. 100 ppm was found to cause 100% larval mortality at 24 h of exposure in case of Cx. quinquefasciatus and at 72 h of exposure in Ae. albopictus larvae. After 72 h of exposure under in vitro conditions, the extract demonstrated considerable larvicidal activity with LC50 values of 38.33 and 47.56 against 3rd instar larvae of Culex quinquefasciatus and Aedes albopictus, respectively. The acetone extract can be considered as a highly effective mosquito larvicidal agent that is safe for the environment.
Collapse
Affiliation(s)
- Priyanka Mandal
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Goutam Chandra
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
2
|
Dutta M, Chandra G. Octadecadienoate derivatives from Michelia champaca seed extract as potential larvicide and pupicide against Dengue vector Aedes albopictus. BMC Res Notes 2023; 16:212. [PMID: 37700379 PMCID: PMC10498518 DOI: 10.1186/s13104-023-06487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The present study was designed aiming at finding novel botanicals for controlling the vector population. Objective was to evaluate the larvicidal and pupicidal efficacies of crude and solvent extracts of Michelia champaca seed against the notorious dengue vector Aedes albopictus. 0.5% concentration of the crude extractive and 40 ppm concentration of ethyl acetate extractive were enough to execute 100% of larval mortality of all the instars after 72 h of exposure and the LC50 and LC90values (95% confidence level) of ethyl acetate extractive were 0.9880 ppm and 36.0491 ppm. In case of pupicidal bioassay, 100% mortality was observed at 200 ppm of ethyl acetate extract. Through TLC techniques, the bioactive compounds were isolated, which caused remarkable larval toxicity at 15 ppm concentration. Three-way factorial ANOVA analysis showed different concentrations, time intervals, and instars revealed a significant difference in larval death. FT-IR analysis revealed the presence several important functional groups. Presence of methyl 5,12-octadecadienoate and ethyl 9cis,11trans-octadecadienoate were ascertained by GC-MS analysis. The said bioactive compounds showed very low toxicity in non-target organisms such as damselfly (Ischnura sp.) and water bug (Diplonychus sp.) Thus, proclaiming the potentialities of Michelia champaca seed extracts as larvicidal and pupicidal agents against Ae. albopictus.
Collapse
Affiliation(s)
- Manali Dutta
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Goutam Chandra
- Mosquito, Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
3
|
Awad MA, Eid AM, Elsheikh TMY, Al-Faifi ZE, Saad N, Sultan MH, Selim S, Al-Khalaf AA, Fouda A. Mycosynthesis, Characterization, and Mosquitocidal Activity of Silver Nanoparticles Fabricated by Aspergillus niger Strain. J Fungi (Basel) 2022; 8:jof8040396. [PMID: 35448627 PMCID: PMC9026153 DOI: 10.3390/jof8040396] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Herein, silver nanoparticles (Ag-NPs) were synthesized using an environmentally friendly approach by harnessing the metabolites of Aspergillus niger F2. The successful formation of Ag-NPs was checked by a color change to yellowish-brown, followed by UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD). Data showed the successful formation of crystalline Ag-NPs with a spherical shape at the maximum surface plasmon resonance of 420 nm with a size range of 3–13 nm. The Ag-NPs showed high toxicity against I, II, III, and IV instar larvae and pupae of Aedes aegypti with LC50 and LC90 values of 12.4–22.9 ppm and 22.4–41.4 ppm, respectively under laboratory conditions. The field assay exhibited the highest reduction in larval density due to treatment with Ag-NPs (10× LC50) with values of 59.6%, 74.7%, and 100% after 24, 48, and 72 h, respectively. The exposure of A. aegypti adults to the vapor of burning Ag-NPs-based coils caused a reduction of unfed individuals with a percentage of 81.6 ± 0.5% compared with the positive control, pyrethrin-based coils (86.1 ± 1.1%). The ovicidal activity of biosynthesized Ag-NPs caused the hatching of the eggs with percentages of 50.1 ± 0.9, 33.5 ± 1.1, 22.9 ± 1.1, and 13.7 ± 1.2% for concentrations of 5, 10, 15, and 20 ppm, whereas Ag-NPs at a concentration of 25 and 30 ppm caused complete egg mortality (100%). The obtained data confirmed the applicability of biosynthesized Ag-NPs to the biocontrol of A. aegypti at low concentrations.
Collapse
Affiliation(s)
- Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (T.M.Y.E.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Correspondence: (A.M.E.); (A.F.); Tel.: +20-100-015-4414 (A.M.E.); +20-111-335-1244 (A.F.)
| | - Tarek M. Y. Elsheikh
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (T.M.Y.E.)
| | - Zarraq E. Al-Faifi
- Center for Environmental Research and Studies, Jazan University, P.O. Box 2097, Jazan 42145, Saudi Arabia;
| | - Nadia Saad
- Department of Mathematics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Mahmoud H. Sultan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 72388, Sakaka 72341, Saudi Arabia;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Correspondence: (A.M.E.); (A.F.); Tel.: +20-100-015-4414 (A.M.E.); +20-111-335-1244 (A.F.)
| |
Collapse
|
4
|
da Silva MRM, Ricci-Júnior E. An approach to natural insect repellent formulations: from basic research to technological development. Acta Trop 2020; 212:105419. [PMID: 32119826 DOI: 10.1016/j.actatropica.2020.105419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
The incidence of dengue, Zika, chikungunya, yellow fever and malaria cases has increased significantly in the world. To avoid mosquito bites, one of the best strategies is the use of repellents. The interest in using plants as mosquito repellents has increased significantly. In this review, has been performed a bibliographic survey of the plants with repellent activity, evaluate the trends of natural repellent formulations in the scientific literature, those described in patents and commercially available products. Limonene, 1,8-cineole, geraniol, eugenol and citronellal are the active compounds that mostly appear in the essential oils of plants with repellent activity. The type of natural repellent formulation mostly widely marketed is the spray and lotion, respectively. In patents, classic formulation as emulsion was most frequently used, followed by lotions and sprays. Data collected from scientific articles and patents show that microparticles are the most widely used extended release systems nowadays for natural repellents. The citronella essential oil was the one mostly used among the classic commercially available formulations, as well as in the extended release systems described in the literature and patents. Future research must be conducted to the use of nanotechnology in the development of extended release systems containing essential oils with repellent activity produced from natural and biodegradable materials.
Collapse
|
5
|
Asadollahi A, Khoobdel M, Zahraei-Ramazani A, Azarmi S, Mosawi SH. Effectiveness of plant-based repellents against different Anopheles species: a systematic review. Malar J 2019; 18:436. [PMID: 31864359 PMCID: PMC6925501 DOI: 10.1186/s12936-019-3064-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022] Open
Abstract
Plant-based repellents have been applied for generations in traditional practice as a personal protection approach against different species of Anopheles. Knowledge of traditional repellent plants is a significant resource for the development of new natural products as an alternative to chemical repellents. Many studies have reported evidence of repellant activities of plant extracts or essential oils against malaria vectors worldwide. This systematic review aimed to assess the effectiveness of plant-based repellents against Anopheles mosquitoes. All eligible studies on the repellency effects of plants against Anopheles mosquitoes published up to July 2018 were systematically searched through PubMed/Medline, Scopus and Google scholar databases. Outcomes measures were percentage repellency and protection time. A total of 62 trials met the inclusion criteria. The highest repellency effect was identified from Ligusticum sinense extract, followed by citronella, pine, Dalbergia sissoo, peppermint and Rhizophora mucronata oils with complete protection time ranging from 9.1 to 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and Curcuma longa also showed good repellency with 8 h complete repellency against different species of Anopheles. Essential oils and extracts of some plants could be formulated for the development of eco-friendly repellents against Anopheles species. Plant oils may serve as suitable alternatives to synthetic repellents in the future as they are relatively safe, inexpensive, and are readily available in many parts of the world.
Collapse
Affiliation(s)
- Amin Asadollahi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobdel
- Health Research Centre, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Zahraei-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sahar Azarmi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Govindasamy B, Paramasivam D, Dilipkumar A, Ramalingam KR, Chinnaperumal K, Pachiappan P. Multipurpose efficacy of the lyophilized cell-free supernatant of Salmonella bongori isolated from the freshwater fish, Devario aequipinnatus: toxicity against microbial pathogens and mosquito vectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29162-29180. [PMID: 30112646 DOI: 10.1007/s11356-018-2838-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Presently, the discovery of effective drugs and pesticides from eco-friendly biological sources is an important challenge in the field of life sciences. The present research was aimed for standardizing an innovative approach in the evaluation of the biological potentiality of the metabolites of fish-associated bacteria. We have identified 17 skin-associated bacteria from the freshwater fish, giant danio, Devario aquipinnatus. They were screened through biofilm forming and extracellular enzyme producing ability. The results of preliminary antibacterial evaluation of the bacterial supernatants underlined the importance of three potential strains (BH8, BH10 and BH11) for further applied research. Hence, such strains were subsequently subjected to a novel extraction procedure to overcome the difficulties found in polar solvents mixed with the supernatant. The lyophilized cell-free supernatant (LCFS) of 3 isolates were individually extracted by using methanol. During the testing of LCFS's methanolic extract (LCFS-ME) of 3 isolates, only the extract of BH11-strain exhibited potent inhibitory activity against the pathogenic bacteria and fungi. Furthermore, the larvicidal and mosquitocidal assays on the filariasis vector, Culex quinquefasciatus also showed its potent toxicity on both the adults and developmental instars of mosquito. Through molecular and phylogenetic analyses, the BH11 strain was identified as Salmonella bongori (KR350635). The present finding emphasized that the S. bongori could be an important novel source of effective antimicrobials and mosquitocidal agents.
Collapse
Affiliation(s)
| | - Deepak Paramasivam
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, India
| | - Aiswarya Dilipkumar
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, India
| | - Karthik Raja Ramalingam
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, India
| | - Kamaraj Chinnaperumal
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, India
| | - Perumal Pachiappan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, India.
| |
Collapse
|