Deepa P, Sowndhararajan K, Kim S, Park SJ. A role of Ficus species in the management of diabetes mellitus: A review.
JOURNAL OF ETHNOPHARMACOLOGY 2018;
215:210-232. [PMID:
29305899 DOI:
10.1016/j.jep.2017.12.045]
[Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 12/30/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE
Diabetes mellitus is one of the most common global health concerns, with a rapidly increasing incidence. A variety of medicinal plants, particularly those belonging to the genus Ficus (Moraceae), and their active compounds have been used to treat diabetes and related chronic disorders since ancient times.
AIM OF THE STUDY
The aim of this review is to provide information regarding traditional and scientific knowledge of Ficus species with antidiabetic activity to researchers.
MATERIALS AND METHODS
A literature search was conducted to obtain information about the antidiabetic properties of Ficus from the electronic databases. Common and scientific names of various Ficus species were used as keywords for the search, along with the terms antidiabetic, hypoglycemic and diabetes.
RESULTS
Among the assorted species of Ficus that were included in our search, F. benghalensis, F. carica, F. glomerata, F. glumosa, F. racemosa, and F. religiosa exhibited remarkable antidiabetic properties with various mechanisms of action. Moreover, Ficus species are versatile sources of bioactive metabolites such as flavonoids, phenolic acids, tannins, alkaloids, glycosides, coumarins, triterpenoids, sterols and vitamin E. These extracts and isolated compounds significantly have enhanced insulin secretion and subsequently reduced blood glucose level in various in vivo studies.
CONCLUSION
This review summarizes the antidiabetic potentials of the genus Ficus, including pharmacological studies with mechanisms of action as well as ethnobotanical uses. This review can help inform future scientific research towards the development of novel antidiabetic drugs.
Collapse