1
|
Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, Goh BH, Zacconi F, de Jesus Andreoli Pinto T, Kumbhar P, Disouza J, Dua K, Singh SK. Exploring nanoparticular platform in delivery of repurposed drug for Alzheimer's disease: current approaches and future perspectives. Expert Opin Drug Deliv 2024; 21:1771-1792. [PMID: 39397403 DOI: 10.1080/17425247.2024.2414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD. AREAS COVERED In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated. EXPERT OPINION The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Overseas R & D Centre, Overseas HealthCare Pvt. Ltd, Phillaur, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, Alabama, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Darul Ehsan, Selangor, Malaysia
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Cat´ olica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Santiago, Chile
| | | | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
2
|
Bhattacharyya R, Jha BK. Analyzing fuzzy boundary value problems: a study on the influence of mitochondria and ER fluxes on calcium ions in neuron cells. J Bioenerg Biomembr 2024; 56:15-29. [PMID: 38064155 DOI: 10.1007/s10863-023-09994-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 01/07/2024]
Abstract
Cytosolic-free calcium ions play an important role in various physical and physiological processes. A vital component of neural signaling is the free calcium ion concentration often known as the second messenger. There are many parameters that effect the cytosolic free calcium concentration like buffer, voltage-gated ion channels, Endoplasmic reticulum, Mitochondria, etc. Mitochondria are small organelles located within the nervous system that are involved in processes within cells such as calcium homeostasis management, energy generation, response to stress, and cell demise pathways. In this work, a mathematical model with fuzzy boundary values has been developed to study the effect of Mitochondria and ER fluxes on free Calcium ions. The intended findings are displayed utilizing the physiological understanding that amyloid beta plaques and tangles of neurofibrillary fibers have been identified as the two main causes of AD. The key conclusion of the work is the investigation of [Formula: see text] for healthy cells and cells affected by Alzheimer's disease, which may aid in the study of such processes for computational scientists and medical practitioners. Also, it has been shown that when a unique solution is found for a specific precise problem, it also successfully deals with any underlying ambiguity within the problem by utilizing a technique based on the principles of linear transformation. Furthermore, the comparison between the analytical approach and the generalized hukuhara derivative approach is shown here, which illustrates the benefits of the analytical approach. The simulation is carried out in MATLAB.
Collapse
Affiliation(s)
- Rituparna Bhattacharyya
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
3
|
Experimentally Induced Animal models for Cognitive dysfunction and Alzheimer's disease. MethodsX 2022; 9:101933. [DOI: 10.1016/j.mex.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
|
4
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer's disease pathogenesis. Neurochem Int 2022; 155:105311. [PMID: 35218870 DOI: 10.1016/j.neuint.2022.105311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR) belongs to the phosphatidylinositol kinase-related kinase (PIKK) family. mTOR signaling is required for the commencement of essential cell functions including autophagy. mTOR primarily governs cell growth in response to favourable nutrients and other growth stimuli. However, it also influences aging and other aspects of nutrient-related physiology such as protein synthesis, ribosome biogenesis, and cell proliferation in adults with very limited growth. The major processes for survival such as synaptic plasticity, memory storage and neuronal recovery involve a significant mTOR activity. mTOR dysregulation is becoming a prevalent motif in a variety of human diseases, including cancer, neurological disorders, and other metabolic syndromes. The use of rapamycin to prolong life in different animal models may be attributable to the multiple roles played by mTOR signaling in various processes involved in ageing, protein translation, autophagy, stem cell pool turnover, inflammation, and cellular senescence. mTOR activity was found to be altered in AD brains and rodent models, supporting the notion that aberrant mTOR activity is one of the key events contributing to the onset and progression of AD hallmarks This review assesses the molecular association between the mTOR signaling pathway and pathogenesis of Alzheimer's disease. The research data supporting this theme are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61614, USA.
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, Gaborone, 0022, Botswana.
| |
Collapse
|
5
|
Pazos-Tomas CC, Cruz-Venegas A, Pérez-Santiago AD, Sánchez-Medina MA, Matías-Pérez D, García-Montalvo IA. Vitis vinifera: An Alternative for the Prevention of Neurodegenerative Diseases. J Oleo Sci 2020; 69:1147-1161. [PMID: 32908097 DOI: 10.5650/jos.ess20109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To present a systematic review of published studies in databases such as PUBMED, REDALYC, SCIELO, DIALNET, SCOPUS, EBSCO and CONRICYT related to the role-played by the components present in the vegetable oil of grape seed (Vitis vinífera) and the prevention or delay in the onset or progression of neurodegenerative diseases. The analysis of the research revealed that neurodegenerative diseases causes alterations in consciousness or in the nervous system leading to severe damage in neuronal cells, these pathologies are considered gradual and progressive. Various syndromes manifest the degenerative diseases of the nervous system; in some of them the predominant symptom is the progressive dementia. Among the components of the diet that in numerous epidemiological studies have shown an inverse association are vitamins, minerals, carotenoids, polyunsaturated fatty acids and polyphenols, the latter being the ones addressed in this document. There is an important evidence that a nutritional support based on polyunsaturated fatty acids and antioxidants can be applied to subjects with a history of neurodegenerative conditions in order to act as neuroprotectors. This requires the determination of the nutritional benefits of these nutrients or of nutraceuticals for the health of this group of patients.
Collapse
Affiliation(s)
- Claudia Cecilia Pazos-Tomas
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | - Araceli Cruz-Venegas
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | - Alma Dolores Pérez-Santiago
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | | | - Diana Matías-Pérez
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | | |
Collapse
|
6
|
Kankanamge D, Tennakoon M, Weerasinghe A, Cedeno-Rosario L, Chadee DN, Karunarathne A. G protein αq exerts expression level-dependent distinct signaling paradigms. Cell Signal 2019; 58:34-43. [PMID: 30849518 DOI: 10.1016/j.cellsig.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cβ (PLCβ) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gβγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gβγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gβγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gβγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gβγ signaling.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Amila Weerasinghe
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Luis Cedeno-Rosario
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
7
|
Pharmacokinetics, bioavailability and tissue distribution study of JCC-02, a novel N-methyl-d-aspartate (NMDA) receptor inhibitor, in rats by LC-MS/MS. Eur J Pharm Sci 2019; 131:146-152. [PMID: 30776467 DOI: 10.1016/j.ejps.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 01/27/2023]
Abstract
JCC-02, N-(3,5-dimethyladamantan-1-yl)-N'-(3-chlorophenyl) urea, has been developed as a novel N-methyl-d-aspartate (NMDA) receptor inhibitor for the treatment of Alzheimer's disease (AD). In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to determine the concentration of JCC-02 in rat plasma and different tissues to investigate its pharmacokinetic behavior in vivo and distribution character in organs. The matrix samples were prepared by protein precipitation method with acetonitrile using gliclazide as the internal standard (IS). This validated method was successfully applied to JCC-02 pharmacokinetic study in rats after oral administration of low (0.7 mg·kg-1), medium (2 mg·kg-1) and high (6 mg·kg-1) concentration, intravenous administration (2 mg·kg-1) as well as tissue distribution in rats after administration of JCC-02 (2 mg·kg-1) orally. The results indicated that the area under the time curve (AUC0-∞) and peak plasma concentration (Cmax) were directly proportional to dosage and the pharmacokinetic behavior of JCC-02 in rats was a linear process with respect to dosage. JCC-02 could be absorbed into blood circulation rapidly because of its short time to reach peak plasma concentration (tmax). Meanwhile, JCC-02 has a low clearance and a high volume of distribution, which might result in its long half-time. Oral absolute bioavailability (F) of JCC-02 was (14.61 ± 5.81)%, which was turned out to be low relatively. In tissues, the differences of JCC-02 concentration were quite large. After administration, small intestine (22.29 ± 15.86 μg·mL-1), stomach (7.21 ± 2.87 μg·mL-1), large intestine (1.27 ± 0.57 μg·mL-1), liver (0.96 ± 0.52 μg·mL-1) and fat (0.48 ± 0.24 μg·mL-1) were the first five organs with the largest drug concentration. Small intestine could be the main part of drug absorption where most of the drug was distributed after oral administration. More importantly, JCC-02 could cross the blood-brain barrier (BBB), which may probably have a pretty good therapeutic effect on AD.
Collapse
|
8
|
Abstract
Brain is the most complex structure of the human body. The processes going inside the brain and the mechanisms behind it have been unrevealed up to certain extent only. Out of the various physiological phenomena carried out by the brain, calcium signalling can be considered as one of the most important. Calcium being a second messenger plays an important role in transformation of various information. In view of above, an attempt has been made here to study calcium signalling in presence of buffers, i.e. one kind of proteins and endoplasmic reticulum (ER), which is also known as store house of the cell. Being the store house of the cell, it has very high amount of calcium, whereas buffers decrease the level of free calcium ions by binding calcium ions to it. A two-dimensional mathematical model has been developed to see the impact of these parameters on cytosolic calcium concentration. This mathematical model is solved analytically using Laplace transforms and similarity transforms. The simulations are carried out using MATLAB. It is observed that the impact of buffer and ER is significant on calcium signalling. The obtained results are interpreted with the Alzheimeric condition of the nerve cells.
Collapse
Affiliation(s)
- Devanshi D. Dave
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
9
|
Rapaka D, Bitra VR, Vishala TC, Akula A. Vitis vinifera acts as anti-Alzheimer's agent by modulating biochemical parameters implicated in cognition and memory. J Ayurveda Integr Med 2018; 10:241-247. [PMID: 30337026 PMCID: PMC6938891 DOI: 10.1016/j.jaim.2017.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022] Open
Abstract
Background Aluminum a known neuro and cholinotoxin has been implicated in the pathogenesis of Alzheimer’s disease. Its exposure is associated with impairment of the memory and cognition. Objective The present study was undertaken to evaluate the anti-Alzheimer’s activity of Vitis vinifera in aluminum induced Alzheimer’s disease. Materials and methods In this study, we investigated the behavioral and biochemical effects of aluminum in Sprague-Dawley rats. Animals were exposed to aluminum chloride (100 mg/kg/day) orally for a period of 8 weeks. Vitis was given in doses of 250 mg/kg and 500 mg/kg for 16 weeks and the possible effects of Vitis vinifera on the expression of Tau and amyloid precursor protein were evaluated by PCR analysis and the possible activities of lipid peroxidation, inflammation and anti-cholinesterase activity were evaluated. Results Aluminum intoxication was associated with significant impairment in learning and memory in Morris water maze test. A significant improvement was observed with Vitis vinifera in a dose dependent manner. Conclusion The findings of the present study revealed the significant neuroprotective actions of Vitis vinifera by modifying the biochemical parameters and inhibited the mRNA expression of Amyloid Precursor Protein and Tau, which are the key pathological hallmarks of Alzheimer’s disease, which was further confirmed by histopathological observations.
Collapse
Affiliation(s)
- Deepthi Rapaka
- University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP 530003, India.
| | - Veera Raghavulu Bitra
- University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP 530003, India
| | - T Chandi Vishala
- University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP 530003, India
| | - Annapurna Akula
- University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP 530003, India
| |
Collapse
|
10
|
Abstract
Under the widespread umbrella of dementia, Alzheimer’s disease is the most common form of dementia. Most of the aged people are suffering from Alzheimer’s disease around the world. The reasons for the same are not known in detail and thus various experimental and computational attempts need to be carried out. Calcium, being a second messenger has an immense role in transformation of information. This transformation takes place in the form of signaling in which several parameters play an active role. In present work, an attempt has been made to describe the effect of calcium signaling in nerve cells for Alzheimer’s disease. Here, parameters like advection diffusion and buffering are taken into consideration to visualize the effects of the same on cytosolic calcium concentration. This physiological process is modeled two dimensionally and solved analytically. Laplace and similarity transforms are employed to obtain the desired results. The results are simulated and graphically plotted using MATLAB. The known fact that the higher concentration of calcium has adverse effects on the cell which may result into progression of AD is considered as a lantern in enlightening the physiology of Alzheimer’s disease.
Collapse
Affiliation(s)
- DEVANSHI D. DAVE
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
| | - BRAJESH KUMAR JHA
- Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
11
|
Nachbar M, El Deeb S, Mozafari M, Alhazmi HA, Preu L, Redweik S, Lehmann WD, Wätzig H. Ca2+-complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results. Electrophoresis 2016; 37:744-51. [DOI: 10.1002/elps.201500403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Nachbar
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Mona Mozafari
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Hassan A. Alhazmi
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Sabine Redweik
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Wolf Dieter Lehmann
- Core Facility Molecular Structure Analysis; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| |
Collapse
|