1
|
Anguela XM, High KA. Hemophilia B and gene therapy: a new chapter with etranacogene dezaparvovec. Blood Adv 2024; 8:1796-1803. [PMID: 38592711 PMCID: PMC11006816 DOI: 10.1182/bloodadvances.2023010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT The US Food and Drug Administration (FDA)'s authorization of etranacogene dezaparvovec (Hemgenix) is a significant milestone, constituting not only the first FDA approval of a gene therapy for hemophilia but also the first approval of a liver-targeted adeno-associated virus vector gene therapy. This review summarizes the nonclinical studies and clinical development that supported regulatory clearance. Similar to other gene therapies for single gene disorders, both the short-term safety and the phenotypic improvement were unequivocal, justifying the modest-sized safety and efficacy database, which included 57 participants across the phase 2b (3 participants) and phase 3 (54 participants) studies. The most common adverse reactions included liver enzyme elevation, headache, flu-like symptoms, infusion-related reactions, creatine kinase elevation, malaise, and fatigue; these were mostly transient. One participant had hepatocellular carcinoma on a study-mandated liver ultrasound conducted 1 year after vector infusion; molecular analysis of the resected tumor showed no evidence of vector-related insertional mutagenesis as the etiology. A remarkable 96% of participants in the phase 3 trial were able to stop factor IX (FIX) prophylaxis, with the study demonstrating noninferiority to FIX prophylaxis in terms of the primary end point, annualized bleeding rate. Key secondary end points such as the annualized infusion rate, which declined by 97%, and the plasma FIX activity level at 18 months after infusion, with least squares mean increase of 34.3 percentage points compared with baseline, were both clinically and statistically significant. The FDA's landmark approval of Hemgenix as a pioneering treatment for hemophilia stands on the shoulders of >20 years of gene therapy clinical research and heralds a promising future for genomic medicines.
Collapse
Affiliation(s)
| | - Katherine A. High
- Rockefeller University, New York, NY
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Doshi BS, Samelson-Jones BJ, Nichols TC, Merricks EP, Siner JL, French RA, Lee BJ, Arruda VR, Callan MB. AAV gene therapy in companion dogs with severe hemophilia: Real-world long-term data on immunogenicity, efficacy, and quality of life. Mol Ther Methods Clin Dev 2024; 32:101205. [PMID: 38374963 PMCID: PMC10875295 DOI: 10.1016/j.omtm.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The hemophilias are the most common severe inherited bleeding disorders and are caused by deficiency of clotting factor (F) VIII (hemophilia A) or FIX (hemophilia B). The resultant bleeding predisposition significantly increases morbidity and mortality. The ability to improve the bleeding phenotype with modest increases in clotting factor levels has enabled the development and regulatory approval of adeno-associated viral (AAV) vector gene therapies for people with hemophilia A and B. The canine hemophilia model has proven to be one of the best predictors of therapeutic response in humans. Here, we report long-term follow-up of 12 companion dogs with severe hemophilia that were treated in a real-world setting with AAV gene therapy. Despite more baseline bleeding than in research dogs, companion dogs demonstrated a 94% decrease in bleeding rates and 61% improvement in quality of life over a median of 4.1 years (range 2.6-8.9). No new anti-transgene immune responses were detected; one dog with a pre-existing anti-FVIII inhibitor achieved immune tolerance with gene therapy. Two dogs expressing 1%-5% FVIII post gene therapy experienced fatal bleeding events. These data suggest AAV liver-directed gene therapy is efficacious in a real-world setting but should target expression >5% and closely monitor those with levels in the 1%-5% range.
Collapse
Affiliation(s)
- Bhavya S. Doshi
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Joshua L. Siner
- Divisions of Hematology and Medical Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Robert A. French
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ben J. Lee
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valder R. Arruda
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Beth Callan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Coyle CW, Knight KA, Brown HC, George SN, Denning G, Branella GM, Childers KC, Spiegel PC, Spencer HT, Doering CB. Humanization and functional characterization of enhanced coagulation factor IX variants identified through ancestral sequence reconstruction. J Thromb Haemost 2024; 22:633-644. [PMID: 38016519 PMCID: PMC10922771 DOI: 10.1016/j.jtha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Laboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. OBJECTIVES The goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. METHODS Reductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. RESULTS Five of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. CONCLUSION Starting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.
Collapse
Affiliation(s)
- Christopher W Coyle
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristopher A Knight
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | - Gianna M Branella
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - P Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA.
| |
Collapse
|