1
|
Aydemir Y, Aydemir O, Dinleyici M, Saglik AC, Cam D, Kaya TB, Canpolat FE. Screening for functional gastrointestinal disorders in preterm infants up to 12 months of corrected age: a prospective cohort study. Eur J Pediatr 2024; 183:2091-2099. [PMID: 38347262 PMCID: PMC11035472 DOI: 10.1007/s00431-024-05451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 04/23/2024]
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by a variety of symptoms that are frequently age-dependent, chronic, or recurrent and are not explained by structural or biochemical abnormalities. There are studies in the literature reporting different results regarding the relationship between prematurity and FGIDs. The main objective of this study was to compare the frequency of FGIDs between preterm and term infants. The secondary objective was to evaluate whether there was any association between neonatal characteristics and development of FGIDs. A multicenter prospective cohort study that included preterm infants born before 37 weeks of gestation and healthy term infants was carried out. At 1, 2, 4, 6, 9, and 12 months of age, infants were assessed for the presence of FGIDs using the Rome IV criteria. In preterm infants, an additional follow-up visit was made at 12 months corrected age. 134 preterm and 104 term infants were enrolled in the study. Infantile colic, rumination syndrome, functional constipation, and infant dyschezia were more common in preterm infants. Incidence of other FGIDs (infant regurgitation, functional diarrhea and cyclic vomiting syndrome) were similar among preterm and term infants. Preterm infants who are exclusively breastfeed in the first 6 months of life have a lower incidence of infantile colic (18.8% vs 52.1%, p = 0.025). In terms of chronological age, FGIDs symptoms started later in preterm infants; this difference was statistically significant for infantile colic and regurgitation (median age 2 months vs 1 month, p < 0.001). Conclusions: Preterm infants have a higher prevalence of FGIDs compared with term controls. Therefore, especially if they have gastrointestinal complaints, they should be screened for FGIDs. Possibly due to maturational differences, the time of occurrence of FGIDs may differ in preterm infants. Infantile colic incidence decreases with exclusive breastfeeding. What is Known: • The functional gastrointestinal disorders are a very common in infancy. • Data on preterm infants with FGIDs are currently very limited. What is New: • Preterm infants have a higher incidence of infantile colic, rumination syndrome, functional constipation and infant dyschezia when compared to term infants. • Preterm infants who are exclusively breastfed during the first 6 months of life experience a lower incidence of infantile colic.
Collapse
Affiliation(s)
- Yusuf Aydemir
- Faculty of Medicine Department of Pediatrics, Division of Gastroenterology and Hepatology, Eskisehir Osmangazi University, Meselik, 26040, Eskisehir, Turkey.
| | - Ozge Aydemir
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Meltem Dinleyici
- Faculty of Medicine Department of Pediatrics, Division of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Adviye Cakil Saglik
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Demet Cam
- Neonatal Intensive Care Unit, Dr. Zekai Tahir Burak Womens Health Research and Education Hospital, Ankara, Turkey
| | - Tugba Barsan Kaya
- Faculty of Medicine Department of Pediatrics, Division of Neonatology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fuat Emre Canpolat
- Department of Pediatrics, Division of Neonatology, University of Health Science Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Gut microbiota absence and transplantation affect diarrhea: an investigation in the germ-free piglet model. Anim Biotechnol 2023; 34:3971-3977. [PMID: 37906091 DOI: 10.1080/10495398.2023.2248200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This experiment was conducted to explore the effects of gut microbiota on neonatal diarrhea in a germ-free (GF) pig model. Twelve hysterectomy-derived GF piglets were housed in six sterile isolators. Among them, six piglets were treated as the GF group, and the other six piglets were orally introduced with healthy sow fecal suspension and regarded as the fecal microbiota transplantation (FMT) group. Another six piglets from natural birth were considered as the conventional (CV) group. The GF and FMT piglets were hand-fed with sterile milk powder for 21 days, and the CV piglets were suckled for the same days. Then, all piglets were fed with sterile feed for another 21 days. Results exhibited that the GF group's fecal score and moisture level were higher than those in the CV and FMT groups (p < 0.05). Meanwhile, the abundances of colonic AQP1 and AQP8 in the GF group were the greatest among these treatments (p < 0.05). However, FMT piglets had a lower fecal score in d 22-28 and d 29-35 than that in the CV piglets (p < 0.05). Collectively, the absence of gut microbiota may cause diarrhea in the piglet model, and transplantation of maternal fecal microbiota may reverse it.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Martyniak A, Zakrzewska Z, Schab M, Zawartka A, Wędrychowicz A, Skoczeń S, Tomasik PJ. Prevention and Health Benefits of Prebiotics, Probiotics and Postbiotics in Acute Lymphoblastic Leukemia. Microorganisms 2023; 11:1775. [PMID: 37512947 PMCID: PMC10384688 DOI: 10.3390/microorganisms11071775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children, comprising 75-85% of cases. Aggressive treatment of leukemias includes chemotherapy and antibiotics that often disrupt the host microbiota. Additionally, the gut microbiota may play a role in the development and progression of acute leukemia. Prebiotics, probiotics, and postbiotics are considered beneficial to health. The role of prebiotics in the treatment and development of leukemia is not well understood, but inulin can be potentially used in the treatment of leukemia. Some probiotic bacteria such as Lactobacillus shows anticancer activity in in vitro studies. Additionally, Bifidobacterium spp., as a consequence of the inhibition of growth factor signaling and mitochondrial-mediated apoptosis, decrease the proliferation of cancer cells. Many bacterial metabolites have promising anticancer potential. The available research results are promising. However, more research is needed in humans, especially in the child population, to fully understand the relationship between the gut microbiota and acute leukemia.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Zuzanna Zakrzewska
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Magdalena Schab
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Aleksandra Zawartka
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Andrzej Wędrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Przemysław J Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
4
|
Wang S, Cui J, Jiang S, Zheng C, Zhao J, Zhang H, Zhai Q. Early life gut microbiota: Consequences for health and opportunities for prevention. Crit Rev Food Sci Nutr 2022; 64:5793-5817. [PMID: 36537331 DOI: 10.1080/10408398.2022.2158451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Chengdong Zheng
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Indian Academy of Pediatrics Consensus Guidelines for Probiotic Use in Childhood Diarrhea. Indian Pediatr 2022. [DOI: 10.1007/s13312-022-2557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022; 10:microorganisms10071330. [PMID: 35889049 PMCID: PMC9317605 DOI: 10.3390/microorganisms10071330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency anemia (IDA) is very common and affects approximately 1/3 of the world’s human population. There are strong research data that some probiotics, such as Lactobacillus acidophilus and Bifidobacterium longum improve iron absorption and influence the course of anemia. Furthermore, prebiotics, including galactooligosaccharides (GOS) and fructooligosaccharides (FOS), increase iron bioavailability and decrease its destructive effect on the intestinal microbiota. In addition, multiple postbiotics, which are probiotic metabolites, including vitamins, short-chain fatty acids (SCFA), and tryptophan, are involved in the regulation of intestinal absorption and may influence iron status in humans. This review presents the actual data from research studies on the influence of probiotics, prebiotics, and postbiotics on the prevention and therapy of IDA and the latest findings regarding their mechanisms of action. A comparison of the latest research data and theories regarding the role of pre-, post-, and probiotics and the mechanism of their action in anemias is also presented and discussed.
Collapse
|
7
|
Horne RG, Freedman SB, Johnson-Henry KC, Pang XL, Lee BE, Farion KJ, Gouin S, Schuh S, Poonai N, Hurley KF, Finkelstein Y, Xie J, Williamson-Urquhart S, Chui L, Rossi L, Surette MG, Sherman PM. Intestinal Microbial Composition of Children in a Randomized Controlled Trial of Probiotics to Treat Acute Gastroenteritis. Front Cell Infect Microbiol 2022; 12:883163. [PMID: 35774405 PMCID: PMC9238408 DOI: 10.3389/fcimb.2022.883163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Compositional analysis of the intestinal microbiome in pre-schoolers is understudied. Effects of probiotics on the gut microbiota were evaluated in children under 4-years-old presenting to an emergency department with acute gastroenteritis. Included were 70 study participants (n=32 placebo, n=38 probiotics) with stool specimens at baseline (day 0), day 5, and after a washout period (day 28). Microbiota composition and deduced functions were profiled using 16S ribosomal RNA sequencing and predictive metagenomics, respectively. Probiotics were detected at day 5 of administration but otherwise had no discernable effects, whereas detection of bacterial infection (P<0.001) and participant age (P<0.001) had the largest effects on microbiota composition, microbial diversity, and deduced bacterial functions. Participants under 1 year had lower bacterial diversity than older aged pre-schoolers; compositional changes of individual bacterial taxa were associated with maturation of the gut microbiota. Advances in age were associated with differences in gut microbiota composition and deduced microbial functions, which have the potential to impact health later in life.
Collapse
Affiliation(s)
- Rachael G. Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen B. Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children’s Hospital, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Xiao-Li Pang
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Bonita E. Lee
- Women and Children’s Research Institute, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - Ken J. Farion
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Serge Gouin
- Departments of Emergency Medicine and Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Schuh
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Naveen Poonai
- Division of Pediatric Emergency Medicine, London Children’s Hospital Health Science Centre, Department of Pediatrics, Western University, London, ON, Canada
| | - Katrina F. Hurley
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Yaron Finkelstein
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jianling Xie
- Pediatric Emergency Medicine, Izaak Walton Killam (IWK) Children’s Hospital, Dalhousie University, Halifax, NS, Canada
| | - Sarah Williamson-Urquhart
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories – Public Health Laboratory (ProvLab), Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Philip M. Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Philip M. Sherman,
| |
Collapse
|
8
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
9
|
Capozza M, Laforgia N, Rizzo V, Salvatore S, Guandalini S, Baldassarre M. Probiotics and Functional Gastrointestinal Disorders in Pediatric Age: A Narrative Review. Front Pediatr 2022; 10:805466. [PMID: 35252059 PMCID: PMC8888932 DOI: 10.3389/fped.2022.805466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Assessment and management of pain are essential components of pediatric care. Pain in pediatric age is characterized by relevant health and socio-economic consequences due to parental concern, medicalization, and long-term physical and psychological impact in children. Pathophysiological mechanisms of nociception include several pathways in which also individual perception and gut-brain axis seem to be involved. In this narrative review, we analyze the rational and the current clinical findings of probiotic use in the management of functional gastrointestinal disorders (FGID) in pediatric age, with special focus on infantile colic, irritable bowel syndrome, constipation, and gastroesophageal reflux. Some specific probiotics showed a significant reduction in crying and fussing compared to placebo in breastfed infants with colic, although their exact mechanism of action in this disorder remains poorly understood. In irritable bowel syndrome, a limited number of studies showed that specific strains of probiotics can improve abdominal pain/discomfort and bloating/gassiness, although data are still scarce. As for constipation, whilst some strains appear to reduce the number of hard stools in constipated children, the evidence is not adequate to support the use of probiotics in the management of functional constipation. Similarly, although some probiotic strains could promote gastric emptying with a potential improvement of functional symptoms related to gastroesophageal reflux, current evidence is insufficient to provide any specific recommendation for the prevention or treatment of gastroesophageal reflux. In conclusion, probiotics have been proposed as part of management of pain in functional gastrointestinal disorders in pediatric age, but mechanisms are still poorly understood and evidence to guide clinical practice is currently inadequate.
Collapse
Affiliation(s)
- Manuela Capozza
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari “Aldo Moro”, Bari, Italy
| | - Nicola Laforgia
- Section of Neonatology and Neonatal Intensive Care Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, Bari, Italy
| | - Valentina Rizzo
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari “Aldo Moro”, Bari, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, Ospedale “F. Del Ponte”, Varese, Italy
| | - Stefano Guandalini
- Section of Gastroenterology, Department of Pediatrics, Hepatology and Nutrition University of Chicago, Chicago, IL, United States
| | - Mariella Baldassarre
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
10
|
Gu X, Sim JX, Lee WL, Cui L, Chan YF, Chang ED, Teh YE, Zhang AN, Armas F, Chandra F, Chen H, Zhao S, Lee Z, Thompson JR, Ooi EE, Low JG, Alm EJ, Kalimuddin S. Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-associated diarrhea. iScience 2022; 25:103644. [PMID: 35005566 PMCID: PMC8718891 DOI: 10.1016/j.isci.2021.103644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-associated diarrhea (AAD) affects a significant proportion of patients receiving antibiotics. We sought to understand if differences in the gut microbiome would influence the development of AAD. We administered a 3-day course of amoxicillin-clavulanate to 30 healthy adult volunteers, and analyzed their stool microbiome, using 16S rRNA gene sequencing, at baseline and up to 4 weeks post antibiotic administration. Lower levels of gut Ruminococcaceae were significantly and consistently observed from baseline until day 7 in participants who developed AAD. Overall, participants who developed AAD experienced a greater decrease in microbial diversity. The probability of AAD could be predicted based on qPCR-derived levels of Faecalibacterium prausnitzii at baseline. Our findings suggest that a lack of gut Ruminococcaceae influences development of AAD. Quantification of F. prausnitzii in stool prior to antibiotic administration may help identify patients at risk of AAD, and aid clinicians in devising individualized treatment regimens to minimize such adverse effects.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Jean X.Y. Sim
- Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore 169856, Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Yvonne F.Z. Chan
- Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore 169856, Singapore
| | - Ega Danu Chang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Yii Ean Teh
- Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore 169856, Singapore
| | - An-Ni Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Shijie Zhao
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Zhanyi Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Janelle R. Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Asian School of the Environment, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Centre (ViREMiCS), 20 College Road, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549, Singapore
| | - Jenny G. Low
- Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore 169856, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Centre (ViREMiCS), 20 College Road, Singapore 169856, Singapore
| | - Eric J. Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Building E25-321, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore 169856, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
11
|
Dudnyk VM, Andrikevych II, Khromykh K, Mantak HI, Rudenko HM. ANTIBIOTIC ASSOCIATIVE DISORDERS OF THE MICROBIOCENOSIS OF THE COLON IN INFANTS WITH ACUTE RESPIRATORY DISEASES. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1323-1327. [PMID: 35758452 DOI: 10.36740/wlek202205217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: Study the effect of antibiotics of different groups on the condition of the colon microflora in infants with acute respiratory pathology. PATIENTS AND METHODS Materials and methods: 140 infants with acute respiratory pathology were examined. Clinical, laboratory and instrumental examination, assessment of the functional state of all organs and systems, chest x ray, clinical signs of the colon microbiocenosis violation, analysis of bacteriological examination and immunological studies of local colon immunity (immunoglobulin concentration (sIgA, IgA, IgG, IgM) in coprofiltrates) were done. RESULTS Results: The negative effect of antibiotics of different pharmacological groups on the colon microflora state in infants with acute respiratory diseases has been established. The indigenous microflora of the colon is most inhibited by drugs from the group of 3rd generation cephalosporins, aminoglycosides and their combination. While cephalosporins 1-2nd generations, penicillins and macrolides to a lesser extent affect the state of the microbiocenosis of the colon. The use of two courses of antibacterial therapy to a greater extent disrupts the microbiocenosis of the colon in the examined children, compared with one course of therapy. In commune acquired pneumonia and acute complicated bronchiolitis in infants on the background of antibiotic therapy there is a probable decrease in secretory immunoglobulin in coprofiltrate (sIgA), compared with healthy children (p <0.05). CONCLUSION Conclusions: The analysis of the obtained results showed that antibiotic therapy negatively affects not only the condition of the colon microflora in the examined children, but also suppresses humoral factors of local immunity of the colonic mucosa. Key words: digestive tract microbiocenosis, antibiotic therapy, children.
Collapse
Affiliation(s)
| | | | | | - Halyna I Mantak
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | | |
Collapse
|
12
|
Niu H, Zhou X, Gong P, Jiao Y, Zhang J, Wu Y, Lyu L, Liang C, Chen S, Han X, Zhang L. Effect of Lactobacillus rhamnosus MN-431 Producing Indole Derivatives on Complementary Feeding-Induced Diarrhea Rat Pups Through the Enhancement of the Intestinal Barrier Function. Mol Nutr Food Res 2021; 66:e2100619. [PMID: 34806832 DOI: 10.1002/mnfr.202100619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/26/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Many infants suffer from complementary feeding-induced diarrhea (CFID). Studies have shown that intestinal microbes can enhance the intestinal barrier and prevent diarrhea by producing indole derivatives that promote pregnane X receptor (PXR) expression. METHODS AND RESULTS In this study, the indole test and determination of the PXR concentration are performed on tryptophan broth cultures of 320-suspected Lactobacillus and Enterococcus strains. Four strains that produce indole derivatives that promote the expression of PXR are screened as potential functional probiotics. Both Lactobacillus rhamnosus MN-431 (L. rhamnosus MN-431) and Lactobacillus oris FN-448 (L. oris FN-448) can colonize the intestine of rat pups, and L. rhamnosus MN-431 can significantly decrease the incidence of diarrhea and intestinal permeability in rat pups. Using real-time qPCR and the analysis of the intestinal morphology using immunohistochemistry, it is observed that the metabolized tryptophan from L. rhamnosus MN-431 can reduce small intestinal mucosal damage by stimulating PXR/NF-κB signaling and activating PXR and aryl hydrocarbon receptor. The intestinal barrier is also enhanced by promoting the expression of tight junction proteins such as Occludin and zonula occludens-1 in baby rats. CONCLUSION The results demonstrate that L. rhamnosus MN-431 can metabolize tryptophan to prevent infantile CFID by promoting the expression of PXR.
Collapse
Affiliation(s)
- Haiyue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | | | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yuehua Jiao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Jiliang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yifan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Linzheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shiwei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
13
|
Zhong H, Wang XG, Wang J, Chen YJ, Qin HL, Yang R. Impact of probiotics supplement on the gut microbiota in neonates with antibiotic exposure: an open-label single-center randomized parallel controlled study. World J Pediatr 2021; 17:385-393. [PMID: 34331676 DOI: 10.1007/s12519-021-00443-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antibiotics, a common strategy used for neonatal infection, show consistent effect on the gut microbiota of neonates. Supplementation with probiotics has become increasingly popular in mitigating the loss of the gut microbiota. However, no clear consensus recommending the use of probiotics in the infection of neonates currently exists. This study examined the effects of probiotics on the gut microbiota of infectious neonates when used concurrently with or during the recovery period following antibiotic therapy. METHODS Fifty-five full-term neonates diagnosed with neonatal infections were divided into the following groups: NI (no intervention, antibiotic therapy only), PCA (probiotics used concurrently with antibiotics), and PAA (probiotics used after antibiotics). The NI group received antibiotic treatment (piperacillin-tazobactam) for 1 week and the PCA group received antibiotic treatment together with probiotics (Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis) for 1 week. The PAA group received antibiotic treatment for 1 week followed by probiotics for 1 week. Fecal samples were collected at four time nodes: newborn, 1 week, 2 weeks, and 42 days after birth. The composition of the gut microbiota was determined by the high-throughput sequencing of 16S rRNA amplicons. RESULTS Antibiotic exposure was found to dramatically alter gut microbiota, with a significant decrease of Bifidobacterium and Lactobacillus. The use of probiotics did not restore the overall diversity of the gut microbiota. However, using probiotics simultaneously with the antibiotics was found to be beneficial for the gut microbiota as compared to delaying the use of probiotics to follow treatment with antibiotics, particularly in promoting the abundance of Bifidobacterium. CONCLUSIONS These results suggest that the early use of probiotics may have a potential ability to remodel the gut microbiota during recovery from antibiotic treatment. However, further study is required to fully understand the long-term effects including the clinical benefits.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Xiang-Geng Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Jing Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yan-Jie Chen
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Huan-Long Qin
- Institute for Intestinal Diseases, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
14
|
Depoorter L, Vandenplas Y. Probiotics in Pediatrics. A Review and Practical Guide. Nutrients 2021; 13:2176. [PMID: 34202742 PMCID: PMC8308463 DOI: 10.3390/nu13072176] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The potential benefit of the administration of probiotics in children has been studied in many settings globally. Probiotics products contain viable micro-organisms that confer a health benefit on the host. Beneficial effects of selected probiotic strains for the management or prevention of selected pediatric conditions have been demonstrated. The purpose of this paper is to provide an overview of current available evidence on the efficacy of specific probiotics in selected conditions to guide pediatricians in decision-making on the therapeutic or prophylactic use of probiotic strains in children. Evidence to support the use of certain probiotics in selected pediatric conditions is often available. In addition, the administration of probiotics is associated with a low risk of adverse events and is generally well tolerated. The best documented efficacy of certain probiotics is for treatment of infectious gastroenteritis, and prevention of antibiotic-associated, Clostridioides difficile-associated and nosocomial diarrhea. Unfortunately, due to study heterogeneity and in some cases high risk of bias in published studies, a broad consensus is lacking for specific probiotic strains, doses and treatment regimens for some pediatric indications. The current available evidence thus limits the systematic administration of probiotics. The most recent meta-analyses and reviews highlight the need for more well-designed, properly powered, strain-specific and dedicated-dose response studies.
Collapse
Affiliation(s)
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, 1090 Brussels, Belgium;
| |
Collapse
|
15
|
Zhou Y, Lu W, Tang W. Gastrointestinal failure score in children with traumatic brain injury. BMC Pediatr 2021; 21:219. [PMID: 33947372 PMCID: PMC8094472 DOI: 10.1186/s12887-021-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To review the value of the gastrointestinal failure (GIF) score in children with different degrees of traumatic brain injury (TBI) by analyzing the correlation between outcome and gastrointestinal function. METHODS A total of 165 children with TBI who were diagnosed and treated in the surgical intensive care unit (SICU) for longer than 72 h between August 2017 and September 2019 were analyzed. Admission parameters included sex, age, Glasgow Coma Scale (GCS) score, body mass index (BMI), leukocyte count, C-reactive protein (CRP), hemoglobin (Hb), hematocrit (Hct), blood glucose, lactic acid, procalcitonin (PCT), albumin, plasma osmotic pressure, prothrombin time (PT) and activated partial thromboplastin time (APTT). To predict outcomes, the Pediatric Sequential Organ Failure Assessment (SOFA) score, Pediatric Clinical Illness Score (PCIS), and mean GIF score for the first three days were combined. RESULTS The percentage of patients with gastrointestinal dysfunction on the first day was 78.8 %. Food intolerance (FI) and intra-abdominal hypertension (IAH) developed in 36.4 and 21.8 % of the patients, respectively. The GIF score and mean GIF score for the first three days were significantly different between children with different degrees of TBI (P < 0.05); these scores were also significantly different between patients who died and those who survived (P < 0.05). The mean GIF score for the first three days was identified as an independent risk factor for mortality (odds ratio > 1, 95 % confidence interval = 1.457 to 16.016, P < 0.01), as was the PCIS. Receiver operating characteristic (ROC) curve analysis suggested that the mean GIF score for the first three days had the same calibrating power as the PCIS in discriminating the risk of death of children. CONCLUSIONS The incidence of gastrointestinal dysfunction in children with TBI is high. The GIF score has the ability to reflect the status of the gastrointestinal system. The mean GIF score for the first three days has high prognostic value for ICU mortality in the SICU.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Jiangsu Province, 210008, Nanjing, China
| | - Weifeng Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Jiangsu Province, 210008, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Jiangsu Province, 210008, Nanjing, China.
| |
Collapse
|
16
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Kuwelker K, Langeland N, Löhr IH, Gidion J, Manyahi J, Moyo SJ, Blomberg B, Klingenberg C. Use of probiotics to reduce infections and death and prevent colonization with extended-spectrum beta-lactamase (ESBL)-producing bacteria among newborn infants in Tanzania (ProRIDE Trial): study protocol for a randomized controlled clinical trial. Trials 2021; 22:312. [PMID: 33926519 PMCID: PMC8082054 DOI: 10.1186/s13063-021-05251-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) has emerged as an urgent global health threat and is by the World Health Organization ranked as priority 1 among pathogens in need of new treatment. Studies have shown high mortality in Tanzanian children with ESBL-E infections. Gut colonization of ESBL-E, which is a potential risk factor of ESBL-E infections, is reported to be very high among children in Tanzania. Probiotics may potentially reduce gut colonization of multidrug-resistant bacteria. However, there is limited data on whether probiotics may reduce ESBL-E carriage in infants. The ProRIDE Trial aims to evaluate whether the use of probiotics can reduce morbidity and mortality among infants in Haydom, Tanzania, and whether this effect is associated with a reduction in ESBL-E colonization and/or infections. METHODS/DESIGN This large randomized double-blinded placebo-controlled trial aims to recruit 2000 newborn infants at Haydom Lutheran Hospital and the surrounding area in the period of November 2020 to November 2021. Participants will be enrolled from days 0 to 3 after birth and randomized to receive probiotics or placebo for 4 weeks. Participants will be followed-up for 6 months, during which three visits will be made to collect clinical and demographic information, as well as rectal swabs and fecal samples which will be subjected to laboratory analysis. The primary composite outcome is the prevalence of death and/or hospitalization at 6 months of age. DISCUSSION As the use of probiotics may give a more favorable gut composition, and thereby improve health and reduce morbidity and mortality, the results may have implications for future therapy guidelines in Africa and internationally. TRIAL REGISTRATION ClinicalTrials.gov NCT04172012. Registered on November 21, 2019.
Collapse
Affiliation(s)
- Kanika Kuwelker
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Haukeland University Hospital, Haukelandsbakken, 5009 Bergen, Norway
| | - Nina Langeland
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Haukeland University Hospital, Haukelandsbakken, 5009 Bergen, Norway
- Department of Clinical Science, University of Bergen, Laboratory Building, Haukeland University Hospital, Jonas Lies veg 87, 5021 Bergen, Norway
| | - Iren Høyland Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Gerd Ragna Bloch Thorsens gate, 4011 Stavanger, Norway
| | - Joshua Gidion
- Department of Paediatrics, Haydom Lutheran Hospital, Mbulu, Manyara Tanzania
| | - Joel Manyahi
- Department of Clinical Science, University of Bergen, Laboratory Building, Haukeland University Hospital, Jonas Lies veg 87, 5021 Bergen, Norway
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, P.O. Box 65005, Dar es Salaam, Tanzania
| | - Sabrina John Moyo
- Department of Clinical Science, University of Bergen, Laboratory Building, Haukeland University Hospital, Jonas Lies veg 87, 5021 Bergen, Norway
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, P.O. Box 65005, Dar es Salaam, Tanzania
| | - Bjørn Blomberg
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Haukeland University Hospital, Haukelandsbakken, 5009 Bergen, Norway
- Department of Clinical Science, University of Bergen, Laboratory Building, Haukeland University Hospital, Jonas Lies veg 87, 5021 Bergen, Norway
| | - Claus Klingenberg
- Department of Paediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
- Paediatric Research Group, Faculty of Health Sciences, University of Tromsø-Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
19
|
Sainz T, Delgado J, Mendez‐Echevarría A, Santiago B, Lopez‐Varela E, Aguilera‐Alonso D, Saavedra‐Lozano J, Rodríguez‐Fernández R, Holguín Á, Navarro ML, Muñoz‐Fernández MÁ, Rivero‐Calle I, Solana MJ, López‐Herce J, Calvo C. The clinical relevance of the microbiome when managing paediatric infectious diseases-Narrative review. Acta Paediatr 2021; 110:441-449. [PMID: 32961592 DOI: 10.1111/apa.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
In recent years, the field of infectious diseases has been hit by the overwhelming amount of information generated while the human microbiome is being disentangled. Based on the interaction between the microbiota and the immune system, the implications regarding infectious diseases are probably major and remain a challenge. AIMS This review was conceived as a comprehensive tool to provide an overview of the available evidence regarding the influence of the microbiome on infectious diseases in children. METHODS We present the main findings aroused from microbiome research in prevention, diagnosis and treatment of infectious disease under a paediatric perspective, to inform clinicians of the potential relevance of microbiome-related knowledge for translation to clinical practice. RESULTS AND CONCLUSION The evidence shown in this review highlights the numerous research gaps ahead and supports the need to move forward to integrating the so-called microbiome thinking into our routine clinical practice.
Collapse
Affiliation(s)
- Talía Sainz
- Hospital La Paz and La Paz Research Intitute (IdiPAZ) Madrid Spain
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
| | - Jaime Delgado
- Hospital La Paz and La Paz Research Intitute (IdiPAZ) Madrid Spain
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
| | - Ana Mendez‐Echevarría
- Hospital La Paz and La Paz Research Intitute (IdiPAZ) Madrid Spain
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
| | - Begoña Santiago
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Elisa Lopez‐Varela
- ISGlobal, Barcelona Centre for International Health ResearchHospital Clinic ‐ Universitat de Barcelona Barcelona Spain
| | - David Aguilera‐Alonso
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Jesús Saavedra‐Lozano
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Rosa Rodríguez‐Fernández
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - África Holguín
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Ramón y Cajal Research Institute (IRyCIS)‐CIBERESP in Hospital Ramón y Cajal Madrid Spain
| | - Marisa L. Navarro
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - María Ángeles Muñoz‐Fernández
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Irene Rivero‐Calle
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital Clínico Universitario de Santiago‐CHUS and Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - María José Solana
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Jesús López‐Herce
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
- Hospital General Universitario Gregorio Marañón and Research Institute IISGM Madrid Spain
| | - Cristina Calvo
- Hospital La Paz and La Paz Research Intitute (IdiPAZ) Madrid Spain
- The Traslational Research Network of Pediatric Infectious Diseases (RITIP) Madrid Spain
| |
Collapse
|
20
|
Ouald Chaib A, Levy EI, Ouald Chaib M, Vandenplas Y. The influence of the gastrointestinal microbiome on infant colic. Expert Rev Gastroenterol Hepatol 2020; 14:919-932. [PMID: 32633578 DOI: 10.1080/17474124.2020.1791702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although infantile colic is relatively frequent, its pathophysiology is not yet understood. The aim of this paper is to provide a better understanding of the link between infantile colic and the gastrointestinal microbiome. AREAS COVERED The gastro-intestinal microbiome may already start to develop in the womb and grows exponentially immediately after birth. Factors influencing the microbiome can cause dysbiosis and precipitate symptoms of colic through several mechanisms such as increased gas production and low grade gut inflammation. Other possible factors are immaturity of the enterohepatic bile acid cycle and administration of antibiotics and other medications during the perinatal period. An effective treatment for all colicky infants has yet to be discovered, but the probiotic Lactobacillus reuteri DSM17938 was shown to be effective in breastfed infants with colic. The scientific databases 'Pubmed' and 'Google scholar' were searched from inception until 02/2020. Relevant articles were selected based on the abstract. EXPERT OPINION Recent literature confirmed that the composition of the gastrointestinal microbiome is associated with the development of infantile colic. It can be speculated that full sequencing and bioinformatics analysis to identify the microbiome down to the species level may provide answers to the etiology and management of infantile colic.
Collapse
Affiliation(s)
- Abdelhalim Ouald Chaib
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel , Brussels, Belgium
| | - Elvira Ingrid Levy
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel , Brussels, Belgium
| | - Mariam Ouald Chaib
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel , Brussels, Belgium
| | - Yvan Vandenplas
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|
21
|
Dioso CM, Vital P, Arellano K, Park H, Todorov SD, Ji Y, Holzapfel W. Do Your Kids Get What You Paid for? Evaluation of Commercially Available Probiotic Products Intended for Children in the Republic of the Philippines and the Republic of Korea. Foods 2020; 9:E1229. [PMID: 32899215 PMCID: PMC7555838 DOI: 10.3390/foods9091229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
A wide range of probiotic products is available on the market and can be easily purchased over the counter and unlike pharmaceutical drugs, their commercial distribution is not strictly regulated. In this study, ten probiotic preparations commercially available for children's consumption in the Republic of the Philippines (PH) and the Republic of Korea (SK) have been investigated. The analyses included determination of viable counts and taxonomic identification of the bacterial species present in each formulation. The status of each product was assessed by comparing the results with information and claims provided on the label. In addition to their molecular identification, safety assessment of the isolated strains was conducted by testing for hemolysis, biogenic amine production and antibiotic resistance. One out of the ten products contained lower viable numbers of recovered microorganisms than claimed on the label. Enterococcus strains, although not mentioned on the label, were isolated from four products. Some of these isolates produced biogenic amines and were resistant to one or several antibiotics. Metagenomic analyses of two products revealed that one product did not contain most of the microorganisms declared in its specification. The study demonstrated that some commercial probiotic products for children did not match their label claims. Infants and young children belong to the most vulnerable members of society, and food supplements including probiotics destined for this consumer group require careful checking and strict regulation before commercial distribution.
Collapse
Affiliation(s)
- Clarizza May Dioso
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines;
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Pierangeli Vital
- Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Karina Arellano
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Haryung Park
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| | - Svetoslav Dimitrov Todorov
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Yosep Ji
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| |
Collapse
|
22
|
Uusitalo U, Andren Aronsson C, Liu X, Kurppa K, Yang J, Liu E, Skidmore J, Winkler C, Rewers MJ, Hagopian WA, She JX, Toppari J, Ziegler AG, Akolkar B, Norris JM, Virtanen SM, Krischer JP, Agardh D. Early Probiotic Supplementation and the Risk of Celiac Disease in Children at Genetic Risk. Nutrients 2019; 11:nu11081790. [PMID: 31382440 PMCID: PMC6722940 DOI: 10.3390/nu11081790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk.
Collapse
Grants
- U01 DK063821 NIDDK NIH HHS
- UC4 DK063863 NIDDK NIH HHS
- U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483 NIDDK NIH HHS
- UL1 TR000064 NIH HHS
- UC4 DK117483 NIDDK NIH HHS
- UC4 DK112243 NIDDK NIH HHS
- UL1 TR001082 NIH HHS
- U01 DK063863 NIDDK NIH HHS
- UC4 DK106955 NIDDK NIH HHS
- HHSN267200700014C NIDDK NIH HHS
Collapse
Affiliation(s)
- Ulla Uusitalo
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Carin Andren Aronsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Xiang Liu
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kalle Kurppa
- Tampere Center for Child Health Research, University of Tampere, 33014 Tampere, Finland
- The University Consortium of Seinäjoki, 60320 Seinäjoki, Finland
| | - Jimin Yang
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Edwin Liu
- Digestive Health Institute, Children's Hospital Colorado, University of Colorado Denver, Aurora, CO 80045, USA
| | | | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, 80804 Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Jin-Xiong She
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Department of Pediatrics, Turku University Hospital, 20521 Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, 80804 Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany
| | - Beena Akolkar
- NIDDK, National Institute of Health, Bethesda, MD 20892, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO 80045, USA
| | - Suvi M Virtanen
- Tampere Center for Child Health Research, University of Tampere, 33014 Tampere, Finland
- Unit of Nutrition, National Institute for Health and Welfare, 00271 Helsinki, Finland
- Tampere University Hospital, and the Science Center of Pirkanmaa Hospital District, 33520 Tampere, Finland
| | - Jeffrey P Krischer
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Daniel Agardh
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| |
Collapse
|