1
|
Geric C, Tavaziva G, Breuninger M, Dheda K, Esmail A, Scott A, Kagujje M, Muyoyeta M, Reither K, Khan AJ, Benedetti A, Ahmad Khan F. Breaking the threshold: Developing multivariable models using computer-aided chest X-ray analysis for tuberculosis triage. Int J Infect Dis 2024; 147:107221. [PMID: 39233047 DOI: 10.1016/j.ijid.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVES Computer-aided detection (CAD) software packages quantify tuberculosis (TB)-compatible chest X-ray (CXR) abnormality as continuous scores. In practice, a threshold value is selected for binary CXR classification. We assessed the diagnostic accuracy of an alternative approach to applying CAD for TB triage: incorporating CAD scores in multivariable modeling. METHODS We pooled individual patient data from four studies. Separately, for two commercial CAD, we used logistic regression to model microbiologically confirmed TB. Models included CAD score, study site, age, sex, human immunodeficiency virus status, and prior TB. We compared specificity at target sensitivities ≥90% between the multivariable model and the current threshold-based approach for CAD use. RESULTS We included 4,733/5,640 (84%) participants with complete covariate data (median age 36 years; 45% female; 22% with prior TB; 22% people living with human immunodeficiency virus). A total of 805 (17%) had TB. Multivariable models demonstrated excellent performance (areas under the receiver operating characteristic curve [95% confidence interval]: software A, 0.91 [0.90-0.93]; software B, 0.92 [0.91-0.93]). Compared with threshold scores, multivariable models increased specificity (e.g., at 90% sensitivity, threshold vs model specificity [95% confidence interval]: software A, 71% [68-74%] vs 75% [74-77%]; software B, 69% [63-75%] vs 75% [74-77%]). CONCLUSION Using CAD scores in multivariable models outperformed the current practice of CAD-threshold-based CXR classification for TB diagnosis.
Collapse
Affiliation(s)
- Coralie Geric
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Gamuchirai Tavaziva
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Canada; Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Marianne Breuninger
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Keertan Dheda
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ali Esmail
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Alex Scott
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Mary Kagujje
- Tuberculosis Department, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Monde Muyoyeta
- Tuberculosis Department, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; Zambart, Lusaka, Zambia
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwill, Switzerland; University of Basel, Basel, Switzerland
| | | | - Andrea Benedetti
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada
| | - Faiz Ahmad Khan
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
2
|
Shipton L, Vitale L. Artificial intelligence and the politics of avoidance in global health. Soc Sci Med 2024; 359:117274. [PMID: 39217716 DOI: 10.1016/j.socscimed.2024.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
For decades, global health actors have centered technology in their interventions. Today, artificial intelligence (AI) is emerging as the latest technology-based solution in global health. Yet, AI, like other technological interventions, is not a comprehensive solution to the fundamental determinants of global health inequities. This article gathers and critically appraises grey and peer-reviewed literature on AI in global health to explore the question: What is avoided when global health prioritizes technological solutions to problems with deep-seated political, economic, and commercial determinants? Our literature search and selection yielded 34 documents, which we analyzed to develop seven areas where AI both continues and disrupts past legacies of technological interventions in global health, with significant implications for health equity and human rights. By focusing on the power dynamics that underpin AI's expansion in global health, we situate it as the latest in a long line of technological interventions that avoids addressing the fundamental determinants of health inequities, albeit at times differently than its technology-based predecessors. We call this phenomenon the 'politics of avoidance.' We conclude with reflections on how the literature we reviewed engages with and recognizes the politics of avoidance and with suggestions for future research, practice, and advocacy.
Collapse
Affiliation(s)
- Leah Shipton
- Department of Political Science, University of British Columbia, 1866 Main Mall C425, Vancouver, BC, V6T 1Z1, Canada; School of Public Policy, Simon Fraser University, 515 West Hasting Street Office 3269, Vancouver, BC, V6B 5K3, Canada.
| | - Lucia Vitale
- Politics Department, University of California at Santa Cruz, 639 Merrill Rd, Santa Cruz, CA, 95064, United States.
| |
Collapse
|
3
|
Hwang EJ, Jeong WG, David PM, Arentz M, Ruhwald M, Yoon SH. AI for Detection of Tuberculosis: Implications for Global Health. Radiol Artif Intell 2024; 6:e230327. [PMID: 38197795 PMCID: PMC10982823 DOI: 10.1148/ryai.230327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Tuberculosis, which primarily affects developing countries, remains a significant global health concern. Since the 2010s, the role of chest radiography has expanded in tuberculosis triage and screening beyond its traditional complementary role in the diagnosis of tuberculosis. Computer-aided diagnosis (CAD) systems for tuberculosis detection on chest radiographs have recently made substantial progress in diagnostic performance, thanks to deep learning technologies. The current performance of CAD systems for tuberculosis has approximated that of human experts, presenting a potential solution to the shortage of human readers to interpret chest radiographs in low- or middle-income, high-tuberculosis-burden countries. This article provides a critical appraisal of developmental process reporting in extant CAD software for tuberculosis, based on the Checklist for Artificial Intelligence in Medical Imaging. It also explores several considerations to scale up CAD solutions, encompassing manufacturer-independent CAD validation, economic and political aspects, and ethical concerns, as well as the potential for broadening radiography-based diagnosis to other nontuberculosis diseases. Collectively, CAD for tuberculosis will emerge as a representative deep learning application, catalyzing advances in global health and health equity. Keywords: Computer-aided Diagnosis (CAD), Conventional Radiography, Thorax, Lung, Machine Learning Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Eui Jin Hwang
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| | - Won Gi Jeong
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| | - Pierre-Marie David
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| | - Matthew Arentz
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| | - Morten Ruhwald
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| | - Soon Ho Yoon
- From the Department of Radiology, Seoul National University Hospital
and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea (E.J.H., S.H.Y.); Department of Radiology, Chonnam National
University Hwasun Hospital, Hwasun, Korea (W.G.J.); Faculty of Pharmacy,
University of Montréal, Montréal, Canada (P.M.D.);
OBVIA–Observatoire sur les Impacts Sociétaux de l'IA et du
Numérique, Québec, Canada (P.M.D.); and FIND–The Global
Alliance for Diagnostics, Geneva, Switzerland (M.A., M.R.)
| |
Collapse
|
4
|
Scott AJ, Perumal T, Hohlfeld A, Oelofse S, Kühn L, Swanepoel J, Geric C, Ahmad Khan F, Esmail A, Ochodo E, Engel M, Dheda K. Diagnostic Accuracy of Computer-Aided Detection During Active Case Finding for Pulmonary Tuberculosis in Africa: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2024; 11:ofae020. [PMID: 38328498 PMCID: PMC10849117 DOI: 10.1093/ofid/ofae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background Computer-aided detection (CAD) may be a useful screening tool for tuberculosis (TB). However, there are limited data about its utility in active case finding (ACF) in a community-based setting, and particularly in an HIV-endemic setting where performance may be compromised. Methods We performed a systematic review and evaluated articles published between January 2012 and February 2023 that included CAD as a screening tool to detect pulmonary TB against a microbiological reference standard (sputum culture and/or nucleic acid amplification test [NAAT]). We collected and summarized data on study characteristics and diagnostic accuracy measures. Two reviewers independently extracted data and assessed methodological quality against Quality Assessment of Diagnostic Accuracy Studies-2 criteria. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines were followed. Results Of 1748 articles reviewed, 5 met with the eligibility criteria and were included in this review. A meta-analysis revealed pooled sensitivity of 0.87 (95% CI, 0.78-0.96) and specificity of 0.74 (95% CI, 0.55-0.93), just below the World Health Organization (WHO)-recommended target product profile (TPP) for a screening test (sensitivity ≥0.90 and specificity ≥0.70). We found a high risk of bias and applicability concerns across all studies. Subgroup analyses, including the impact of HIV and previous TB, were not possible due to the nature of the reporting within the included studies. Conclusions This review provides evidence, specifically in the context of ACF, for CAD as a potentially useful and cost-effective screening tool for TB in a resource-poor HIV-endemic African setting. However, given methodological concerns, caution is required with regards to applicability and generalizability.
Collapse
Affiliation(s)
- Alex J Scott
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Tahlia Perumal
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Ameer Hohlfeld
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Suzette Oelofse
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Louié Kühn
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Jeremi Swanepoel
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Coralie Geric
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Faiz Ahmad Khan
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Aliasgar Esmail
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
| | - Eleanor Ochodo
- Kenya Medical Research Institute, Nairobi, Kenya
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Mark Engel
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa
- Centre for the Study of Antimicrobial Resistance, South African Medical Research Council and University of Cape Town, Cape Town, South Africa
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Eneogu RA, Mitchell EMH, Ogbudebe C, Aboki D, Anyebe V, Dimkpa CB, Egbule D, Nsa B, van der Grinten E, Soyinka FO, Abdur-Razzaq H, Useni S, Lawanson A, Onyemaechi S, Ubochioma E, Scholten J, Verhoef J, Nwadike P, Chukwueme N, Nongo D, Gidado M. Iterative evaluation of mobile computer-assisted digital chest x-ray screening for TB improves efficiency, yield, and outcomes in Nigeria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002018. [PMID: 38232129 DOI: 10.1371/journal.pgph.0002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Wellness on Wheels (WoW) is a model of mobile systematic tuberculosis (TB) screening of high-risk populations combining digital chest radiography with computer-aided automated detection (CAD) and chronic cough screening to identify presumptive TB clients in communities, health facilities, and prisons in Nigeria. The model evolves to address technical, political, and sustainability challenges. Screening methods were iteratively refined to balance TB yield and feasibility across heterogeneous populations. Performance metrics were compared over time. Screening volumes, risk mix, number needed to screen (NNS), number needed to test (NNT), sample loss, TB treatment initiation and outcomes. Efforts to mitigate losses along the diagnostic cascade were tracked. Persons with high CAD4TB score (≥80), who tested negative on a single spot GeneXpert were followed-up to assess TB status at six months. An experimental calibration method achieved a viable CAD threshold for testing. High risk groups and key stakeholders were engaged. Operations evolved in real time to fix problems. Incremental improvements in mean client volumes (128 to 140/day), target group inclusion (92% to 93%), on-site testing (84% to 86%), TB treatment initiation (87% to 91%), and TB treatment success (71% to 85%) were recorded. Attention to those as highest risk boosted efficiency (the NNT declined from 8.2 ± SD8.2 to 7.6 ± SD7.7). Clinical diagnosis was added after follow-up among those with ≥ 80 CAD scores and initially spot -sputum negative found 11 additional TB cases (6.3%) after 121 person-years of follow-up. Iterative adaptation in response to performance metrics foster feasible, acceptable, and efficient TB case-finding in Nigeria. High CAD scores can identify subclinical TB and those at risk of progression to bacteriologically-confirmed TB disease in the near term.
Collapse
Affiliation(s)
- Rupert A Eneogu
- United States Agency for International Development (USAID), Abuja, Nigeria
| | - Ellen M H Mitchell
- Mycobacterial Diseases and Neglected Tropical Diseases Unit, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Danjuma Aboki
- Nasarawa State TB and Leprosy Control Program, Nasarawa, Nigeria
| | | | | | - Daniel Egbule
- Nasarawa State TB and Leprosy Control Program, Nasarawa, Nigeria
| | | | | | | | | | | | - Adebola Lawanson
- National TB and Leprosy Program, Federal Ministry of Health Nigeria, Abuja, Nigeria
| | - Simeon Onyemaechi
- National TB and Leprosy Program, Federal Ministry of Health Nigeria, Abuja, Nigeria
| | - Emperor Ubochioma
- National TB and Leprosy Program, Federal Ministry of Health Nigeria, Abuja, Nigeria
| | | | | | | | | | - Debby Nongo
- United States Agency for International Development (USAID), Abuja, Nigeria
| | | |
Collapse
|
6
|
Onno J, Ahmad Khan F, Daftary A, David PM. Artificial intelligence-based computer aided detection (AI-CAD) in the fight against tuberculosis: Effects of moving health technologies in global health. Soc Sci Med 2023; 327:115949. [PMID: 37207379 DOI: 10.1016/j.socscimed.2023.115949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Computer Aided Detection software based on Artificial Intelligence (AI-CAD), combined with chest X-rays have recently been promoted as an easy fix for a complex problem: ending TB by 2030. WHO has recommended the use of such imaging devices in 2021 and many partnerships have helped propose benchmark analysis and technology comparisons to facilitate their "market access". Our aim is to examine the socio-political and health issues that stem from using AI-CAD technology in a global health context conceptualized as a set of practice and ideas organizing global intervention "in the life of others". We also question how this technology, which is not yet fully implemented in routine use, may limit or amplify some inequalities in the care of tuberculosis. We describe AI-CAD through Actor-Network-Theory framework to understand the global assemblage and composite activities associated with detection through AI-CAD, and interrogate how the technology itself may consolidate a specific configuration of "global health". We explore the various dimensions of AI-CAD "health effects model": technology design, development, regulation, institutional competition, social interaction and health cultures. On a broader level, AI-CAD represents a new version of global health's accelerationist model centered on "moving and autonomous-presumed technologies". We finally present key aspects in our research which help discuss the theories mobilized: AI-CAD ambivalent insertion in global health, the social lives of its data: from efficacy to markets and AI-CAD human care and maintenance it requires. We reflect on the conditions that will affect AI-CAD use and its promises. In the end, the risk of new detection technologies such as AI-CAD is indeed that the fight against TB could be reduced to one that is purely technical and technological, with neglect to its social determinants and effects.
Collapse
Affiliation(s)
- Julien Onno
- Faculty of Pharmacy, University of Montréal, Montréal, Canada; OBVIA, Observatoire sur les impacts sociétaux de l'intelligence artificielle et du numérique, Québec, Canada
| | - Faiz Ahmad Khan
- OBVIA, Observatoire sur les impacts sociétaux de l'intelligence artificielle et du numérique, Québec, Canada; Departments of Medicine & Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Canada
| | - Amrita Daftary
- School of Global Health & Dahdaleh Institute of Global Health Research , York University; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, South Africa
| | - Pierre-Marie David
- Faculty of Pharmacy, University of Montréal, Montréal, Canada; OBVIA, Observatoire sur les impacts sociétaux de l'intelligence artificielle et du numérique, Québec, Canada.
| |
Collapse
|
7
|
Arentz M, Jagtiani N, Kik S, Ruhwald M, Kadam R. AI-CAD for tuberculosis and other global high-burden diseases. Lancet Digit Health 2023; 5:e115. [PMID: 36828604 DOI: 10.1016/s2589-7500(22)00254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Matthew Arentz
- FIND, The Global Alliance for Diagnostics, Geneva 1202, Switzerland.
| | - Nikhil Jagtiani
- FIND, The Global Alliance for Diagnostics, Geneva 1202, Switzerland
| | - Sandra Kik
- FIND, The Global Alliance for Diagnostics, Geneva 1202, Switzerland
| | - Morten Ruhwald
- FIND, The Global Alliance for Diagnostics, Geneva 1202, Switzerland
| | - Rigveda Kadam
- FIND, The Global Alliance for Diagnostics, Geneva 1202, Switzerland
| |
Collapse
|
8
|
Warner DF, Wood R. New tricks for an old dog: opportunities for better tuberculosis control. J Int AIDS Soc 2023; 26:e26081. [PMID: 36951496 PMCID: PMC10035324 DOI: 10.1002/jia2.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Affiliation(s)
- Digby F. Warner
- Molecular Mycobacteriology Research Unit & DSI/NRF Centre of Excellence for Biomedical TB ResearchDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Desmond Tutu Health FoundationFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|