1
|
Guo D, Liu H, Zhao S, Lu X, Wan H, Zhao Y, Liang X, Zhang A, Wu M, Xiao Z, Hu N, Li Z, Xie D. Synergistic rheumatoid arthritis therapy by interrupting the detrimental feedback loop to orchestrate hypoxia M1 macrophage polarization using an enzyme-catalyzed nanoplatform. Bioact Mater 2024; 41:221-238. [PMID: 39149592 PMCID: PMC11324459 DOI: 10.1016/j.bioactmat.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
A detrimental feedback loop between hypoxia and oxidative stress consistently drives macrophage polarization toward a pro-inflammatory M1 phenotype, thus persistently aggravating rheumatoid arthritis (RA) progression. Herein, an enzyme-catalyzed nanoplatform with synergistic hypoxia-relieving and reactive oxygen species (ROS)-scavenging properties was developed using bovine serum albumin-bilirubin-platinum nanoparticles (BSA-BR-Pt NPs). Bilirubin was employed to eliminate ROS, while platinum exhibited a synergistic effect in scavenging ROS and simultaneously generated oxygen. In mice RA model, BSA-BR-Pt NPs treatment exhibited superior effects, resulting in significant improvements in joint inflammation, cartilage damage, and bone erosion, compared to methotrexate, the most widely used antirheumatic drug. Mechanistically, RNA-sequencing data and experimental results elucidated that BSA-BR-Pt NPs induced a re-polarization of hypoxic M1 macrophages to M2 macrophages via switching glycolysis to oxidative phosphorylation through the inhibition of HIF-1α pathway. Collectively, this research for the first time elaborated the underlying mechanism of enzyme-catalyzed nanoplatform in orchestrating macrophage polarization, and identified a novel therapeutic strategy for RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Hui Liu
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Xinya Lu
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Haoyu Wan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Yitao Zhao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Anbiao Zhang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Mengyuan Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhong Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong, PR China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, PR China
| |
Collapse
|
2
|
From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:371-383. [PMID: 35606567 DOI: 10.1038/s41584-022-00786-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.
Collapse
|