1
|
Yang Y, Niu S, Shen C, Yang L, Song S, Peng Y, Xu Y, Guo L, Shen L, Liao Z, Liu J, Zhang S, Cui Y, Chen J, Chen S, Huang T, Wang F, Lu H, Liu Y. Longitudinal viral shedding and antibody response characteristics of men with acute infection of monkeypox virus: a prospective cohort study. Nat Commun 2024; 15:4488. [PMID: 38802350 PMCID: PMC11130326 DOI: 10.1038/s41467-024-48754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Understanding of infection dynamics is important for public health measures against monkeypox virus (MPXV) infection. Herein, samples from multiple body sites and environmental fomites of 77 acute MPXV infections (HIV co-infection: N = 42) were collected every two to three days and used for detection of MPXV DNA, surface protein specific antibodies and neutralizing titers. Skin lesions show 100% positivity rate of MPXV DNA, followed by rectum (88.16%), saliva (83.78%) and oropharynx (78.95%). Positivity rate of oropharynx decreases rapidly after 7 days post symptom onset (d.p.o), while the rectum and saliva maintain a positivity rate similar to skin lesions. Viral dynamics are similar among skin lesions, saliva and oropharynx, with a peak at about 6 d.p.o. In contrast, viral levels in the rectum peak at the beginning of symptom onset and decrease rapidly thereafter. 52.66% of environmental fomite swabs are positive for MPXV DNA, with highest positivity rate (69.89%) from air-conditioning air outlets. High seropositivity against A29L (100%) and H3L (94.74%) are detected, while a correlation between IgG endpoint titers and neutralizing titers is only found for A29L. Most indexes are similar between HIV and Non-HIV participants, while HIV and rectitis are associated with higher viral loads in rectum.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Shuo Song
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yifan Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Liping Guo
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhonghui Liao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Shengjie Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Yanxin Cui
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiayin Chen
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Si Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Ting Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious diseases, Shenzhen, China.
| |
Collapse
|
2
|
Taha AM, Katamesh BE, Hassan AR, Abdelwahab OA, Rustagi S, Nguyen D, Silva-Cajaleon K, Rodriguez-Morales AJ, Mohanty A, Bonilla-Aldana DK, Sah R. Environmental detection and spreading of mpox in healthcare settings: a narrative review. Front Microbiol 2023; 14:1272498. [PMID: 38179458 PMCID: PMC10764434 DOI: 10.3389/fmicb.2023.1272498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Monkeypox virus (MPXV), which causes Monkeypox (Mpox), has recently been found outside its usual geographic distribution and has spread to 117 different nations. The World Health Organization (WHO) designated the epidemic a Public Health Emergency of International Concern (PHEIC). Humans are at risk from MPXV's spread, which has raised concerns, particularly in the wake of the SARS-CoV-2 epidemic. The risk of virus transmission may rise due to the persistence of MPXV on surfaces or in wastewater. The risk of infection may also increase due to insufficient wastewater treatment allowing the virus to survive in the environment. To manage the infection cycle, it is essential to investigate the viral shedding from various lesions, the persistence of MPXV on multiple surfaces, and the length of surface contamination. Environmental contamination may contribute to virus persistence and future infection transmission. The best possible infection control and disinfection techniques depend on this knowledge. It is thought to spread mainly through intimate contact. However, the idea of virus transmission by environmental contamination creates great concern and discussion. There are more cases of environmental surfaces and wastewater contamination. We will talk about wastewater contamination, methods of disinfection, and the present wastewater treatment in this review as well as the persistence of MPXV on various environmental surfaces.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
| | - Basant E. Katamesh
- Faculty of Medicine, Tanta University, Tanta, Egypt
- Mayo Clinic, Rochester, MN, United States
| | | | - Omar Ahmed Abdelwahab
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center and Harvard Medical School, Boston, MA, United States
| | | | - Alfonso J. Rodriguez-Morales
- Faculty of Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de lasAméricas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, India
| |
Collapse
|
3
|
Decousser JW, Romano-Bertrand S, Aho Glele LS, Baron R, Carre Y, Cassier P, Dananche C, Depaix-Champagnac F, Fournier S, Racaud J, Rogues AM, Tamames C, Keita-Perse O, Parneix P, Lavigne T. Healthcare worker protection against mpox contamination: position paper of the French Society for Hospital Hygiene. J Hosp Infect 2023; 140:156-164. [PMID: 37562588 DOI: 10.1016/j.jhin.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
In the context of the recent re-emergence of mpox worldwide, the French Society for Hospital Hygiene (SF2H) performed a literature review of the transmission paths and proposed specific recommendations for healthcare workers (HCWs) caring for patients with suspected or confirmed MPXV. In developed countries, the risk of contamination among HCWs in healthcare facilities seemed to be very low, limited to contamination through needle stick injuries. Two additional contamination cases were reported and not fully explained. Beyond healthcare settings, the analysis of the literature highlighted (i) a main contamination route during sexual intercourse, mainly among men who have sex with men, and (ii) a very low secondary attack rate in other contexts, such as schools or jails. Numerous studies have reported molecular or virus identification on surfaces or in the air surrounding patients, without any association with the low secondary case incidence; moreover, the minimum infectious dose through air or mucosal exposure is still unknown. Owing to the lack of evidence of MPXV respiratory transmission in the healthcare setting, the SF2H recommends the implementation of standard and contact precautions combined with medical/surgical mask use. Owing to the lack of evidence of transcutaneous contamination, the SF2H recommends the use of gloves only if contact with cutaneous lesions or mucous membranes occurs. Regarding the risk of contamination from the environment in healthcare facilities, additional studies must be conducted to investigate this.
Collapse
Affiliation(s)
- J-W Decousser
- Equipe Opérationnelle d'Hygiène, Hôpitaux Universitaires Henri-Mondor, Assistance Publique-Hôpitaux de Paris, UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Enva, USC ANSES, Créteil, France.
| | - S Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, Hospital Hygiene and Infection Control Department, University Hospital of Montpellier, Montpellier, France
| | - L S Aho Glele
- Epidémiologie et hygiène hospitalière, Centre Hospitalo-Universitaire de Dijon, hôpital d'enfants, Dijon, France
| | - R Baron
- Service Hygiène Hospitalière, Pôle Recherche et Santè Publique, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Y Carre
- CHU de Bordeaux, Pôle de Santé Publique, Infection Control Unit, Bordeaux, France
| | - P Cassier
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - C Dananche
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Service Hygiène, épidémiologie, infectiovigilance et prévention Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | | | - S Fournier
- Service Prévention du risque infectieux, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J Racaud
- Service de lutte des infections nosocomiales, Centre Hospitalier Alpes-Leman, Contamine-sur-Arve, France
| | - A-M Rogues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, CHU Bordeaux, Hygiene Hospitalière, Bordeaux, France
| | - C Tamames
- Service de Prévention et contrôle de l'infection, site Pitié Salpêtrière, Paris, France
| | - O Keita-Perse
- Service d'Epidémiologie et d'Hygiène Hospitalière, Centre Hospitalier Princesse Grace, Monaco
| | - P Parneix
- Nouvelle Aquitaine Healthcare-Associated Infection Control Centre, Bordeaux University Hospital, Bordeaux, France
| | - T Lavigne
- Service d'Hygiène Hospitalière, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Saied AA, Chandran D, Chakraborty S, Emran TB, Dhama K. Mpox and healthcare workers — a minireview of our present knowledge. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023; 35:46. [DOI: 10.1186/s43162-023-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Introduction
Workers in the healthcare industry form the backbone of health systems everywhere. In the face of global health crises like the current monkeypox (mpox) outbreak, healthcare workers like doctors, dentists, pharmacists, nurses, midwives, paramedics, administrators, support staff, laboratory technicians, and community health workers all play crucial roles in providing care and containing the spread of the disease.
Aim
Therefore, in the wake of concerns about mpox recurrence, we seek to shed light on the occupational transmission of mpox infection and the possible risk to healthcare personnel.
Results
Contamination of the environment of the household of cases of mpox and environment of the patient care units with the viral DNA has been reported besides asymptomatic cases and detection of viral DNA in air samples; therefore, more research on non-lesion-based testing for human mpox infection for screening asymptomatic people, particularly among populations at high risk of infection, in the event of asymptomatic transmission and potential transmission via aerosols is necessary. Monitoring efforts can be aided by incorporating mpox testing into locations where people are more likely to contract illnesses and seek medical attention. We must take a precautionary infection control approach to control the spread of the virus while completing urgent research to understand better the human-to-human mpox transmission process.
Conclusions
In this minireview, we discuss the potential routes of mpox transmission to healthcare and preventative strategies and measures that should be taken and considered.
Graphical Abstract
Collapse
|
5
|
Mitjà O, Ogoina D, Titanji BK, Galvan C, Muyembe JJ, Marks M, Orkin CM. Monkeypox. Lancet 2023; 401:60-74. [PMID: 36403582 PMCID: PMC9671644 DOI: 10.1016/s0140-6736(22)02075-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Monkeypox is a zoonotic illness caused by the monkeypox virus, an Orthopoxvirus in the same genus as the variola, vaccinia, and cowpox viruses. Since the detection of the first human case in the Democratic Republic of the Congo in 1970, the disease has caused sporadic infections and outbreaks, mainly restricted to some countries in west and central Africa. In July, 2022, WHO declared monkeypox a Public Health Emergency of International Concern, on account of the unprecedented global spread of the disease outside previously endemic countries in Africa and the need for global solidarity to address this previously neglected disease. The 2022 outbreak has been primarily associated with close intimate contact (including sexual activity) and most cases have been diagnosed among men who have sex with men, who often present with novel epidemiological and clinical characteristics. In the 2022 outbreak, the incubation period ranges from 7 days to 10 days and most patients present with a systemic illness that includes fever and myalgia and a characteristic rash, with papules that evolve to vesicles, pustules, and crusts in the genital, anal, or oral regions and often involve the mucosa. Complications that require medical treatment (eg, antiviral therapy, antibacterials, and pain control) occur in up to 40% of patients and include rectal pain, odynophagia, penile oedema, and skin and anorectal abscesses. Most patients have a self-limited illness; between 1% and 13% require hospital admission (for treatment or isolation), and the case-fatality rate is less than 0·1%. A diagnosis can be made through the presence of Orthopoxvirus DNA in PCRs from lesion swabs or body fluids. Patients with severe manifestations and people at risk of severe disease (eg, immunosuppressed people) could benefit from antiviral treatment (eg, tecovirimat). The current strategy for post-exposure prophylaxis or pre-exposure prophylaxis for people at high risk is vaccination with the non-replicating modified vaccinia Ankara. Antiviral treatment and vaccines are not yet available in endemic countries in Africa.
Collapse
Affiliation(s)
- Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections section, Hospital Universitari Germans Trías i Pujol, Badalona, Spain; Fight Infectious Diseases Foundation, Badalona, Spain; School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea.
| | - Dimie Ogoina
- Department of Internal Medicine, Infectious Diseases Unit, Niger Delta University and Niger Delta University Teaching Hospital, Bayelsa, Nigeria
| | - Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Medecins du Cameroun (Medcamer), Yaoundé, Cameroon
| | | | - Jean-Jacques Muyembe
- Institut National de Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Michael Marks
- London School of Hygiene & Tropical Medicine, London, UK; Hospital for Tropical Diseases, University College London Hospital, London, UK; Division of Infection and Immunology, University College London, London, UK
| | - Chloe M Orkin
- Centre for Immunobiology, Blizard Institute, Queen Mary University, London, UK
| |
Collapse
|