1
|
Mphasa M, Ormsby MJ, Mwapasa T, Nambala P, Chidziwisano K, Morse T, Feasey N, Quilliam RS. Urban waste piles are reservoirs for human pathogenic bacteria with high levels of multidrug resistance against last resort antibiotics: A comprehensive temporal and geographic field analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136639. [PMID: 39637810 DOI: 10.1016/j.jhazmat.2024.136639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Inadequate waste management and poor sanitation practices in Low- and Middle-Income Countries (LMICs) leads to waste accumulation in urban and peri-urban residential areas. This increases human exposure to hazardous waste, including plastics, which can harbour pathogenic bacteria. Although lab-based studies demonstrate how plastic pollution can increase the persistence and dissemination of dangerous pathogens, empirical data on pathogen association with plastic in real-world settings are limited. We conducted a year-long spatiotemporal sampling survey in a densely populated informal settlement in Malawi, quantifying enteric bacterial pathogens including ESBL-producing E. coli, Klebsiella pneumoniae, Salmonella spp., Shigella spp., and Vibrio cholerae. Culture-based screening and molecular approaches were used to quantify the presence of each pathogen, together with the distribution and frequency of resistance to antibiotics. Our data indicate that these pathogens commonly associate with urban waste materials. Elevated levels of these pathogens precede typical infection outbreaks, suggesting that urban waste piles may be an important source of community transmission. Notably, many pathogens displayed increased levels of AMR, including against several 'last resort' antibiotics. These findings highlight urban waste piles as potential hotspots for the dissemination of infectious diseases and AMR and underscores the need for urgent waste management interventions to mitigate public health risks.
Collapse
Affiliation(s)
- Madalitso Mphasa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK.
| | - Taonga Mwapasa
- Centre for Water, Sanitation, Health and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 3, Malawi
| | - Peter Nambala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 3, Malawi; Department of Public and Environmental Health, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri, Blantyre 3, Malawi
| | - Tracy Morse
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; The School of Medicine, University of St. Andrews, St.Andrews KY16 9AJ, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| |
Collapse
|
2
|
Caddey B, Fisher S, Barkema HW, Nobrega DB. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev 2025:e0014622. [PMID: 39853095 DOI: 10.1128/cmr.00146-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYNumerous questions persist regarding the role of companion animals as potential reservoirs of antimicrobial-resistant organisms that can infect humans. While relative antimicrobial usage in companion animals is lower than that in humans, certain antimicrobial-resistant pathogens have comparable colonization rates in companion animals and their human counterparts, which inevitably raises questions regarding potential antimicrobial resistance (AMR) transmission. Furthermore, the close contact between pets and their owners, as well as pets, veterinary professionals, and the veterinary clinic environment, provides ample opportunity for zoonotic transmission of antimicrobial-resistant pathogens. Here we summarize what is known about the transmission of AMR and select antimicrobial-resistant organisms between companion animals (primarily dogs, cats, and horses) and humans. We also describe the global distribution of selected antimicrobial-resistant organisms in companion animals. The impact of interspecies AMR transmission within households and veterinary care settings is critically reviewed and discussed in the context of methicillin-resistant staphylococci, extended-spectrum β-lactamase and carbapenemase-producing bacteria. Key research areas are emphasized within established global action plans on AMR, offering valuable insights for shaping future research and surveillance initiatives.
Collapse
Affiliation(s)
- Benjamin Caddey
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sibina Fisher
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
van Wijk M, Tran HH, Vu BNT, Tacoli C, Nguyen TCT, Pham QD, Nguyen THT, Nguyen TT, Nguyen HAT, Trinh TS, Pham TD, Tran HKT, Vu DTV, Dang DA, Tran TD, Nguyen DT, van Doorn HR, Kesteman T, Lewycka S. Prevalence and determinants of faecal carriage of carbapenem- and third-generation cephalosporin-resistant Enterobacterales: a cross-sectional household survey in northern Vietnam. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 54:101281. [PMID: 39886041 PMCID: PMC11780954 DOI: 10.1016/j.lanwpc.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
Background Antimicrobial resistance (AMR) is a silent pandemic causing 1.27 million deaths in 2019, disproportionately affecting low- and middle-income countries, but resistance among commensal microbiota and the determinants of carriage have not been widely reported. This cross-sectional household study aimed to determine the prevalence of carbapenem-resistant (CRE) and third-generation cephalosporin-resistant Enterobacterales (C3GRE) in a rural community in Ha Nam northern Vietnam, as well as the socio-demographic, behavioural, and environmental determinants of carriage. Methods 1502 individuals across 324 households were surveyed between July 2018 and April 2019. Faecal samples were cultured on meropenem and ceftazidime supplemented media to identify CRE and C3GRE, respectively. Logistic regression models were used to explore risk factors for CRE and C3GRE carriage compared to susceptible strains. Findings Colonisation with C3GRE and CRE was 94.0% (95% Confidence Interval (CI) 93.5%-94.4%) and 1.9% (1.6%-2.2%), respectively. The CRE prevalence was too low to explore determinants. Antibiotic use in the last month (adjusted OR 1.22 [95% CI 0.45-3.31]) and recent illness (aOR 1.48 [0.34-6.51]) were not associated with C3GRE carriage. Variables associated with C3GRE carriage were high-income (OR 0.29 [0.12-0.74]), worse sanitary conditions (aOR 4.35 [1.07-17.43]), and frequent beef consumption (aOR 6.56 [2.16-19.98]). A protective association between C3GRE carriage and animal husbandry was observed in children under 5-years (aOR 0.27 [0.09-0.84]). For participants 5-years and older, chicken consumption was associated with increased likelihood of C3GRE carriage (aOR 3.45 [1.45-8.22]), while a protective association was observed for regular tofu (aOR 0.32 [0.14-0.74]) and fermented food consumption (aOR 0.55 [0.31-0.96]). Interpretation In this high-prevalence setting, colonisation with C3GRE was not associated with individual antibiotic use, while environmental exposures, including food and sanitary conditions, were associated with C3GRE colonisation. Further research is required to understand the mechanisms behind these associations. Funding This work was supported by Oxford University Clinical Research Unit internal grants in Vietnam from the Wellcome Trust Africa Asia Programme core grants (2015-2022-106680/Z/14/Z, and 2022-2029-225167/Z/22/Z).
Collapse
Affiliation(s)
- Max van Wijk
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Faculty of Pharmacy – University of Tours, 31 Avenue Monge, 37200, Tours, France
| | - Hoang Huy Tran
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Bich Ngoc Thi Vu
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Costanza Tacoli
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Tu Cam Thi Nguyen
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Quynh Dieu Pham
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | | | - Trang Thu Nguyen
- Faculty of Pharmacy – University of Tours, 31 Avenue Monge, 37200, Tours, France
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Tung Son Trinh
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Thai Duy Pham
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Huong Kieu Thi Tran
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Dung Tien Viet Vu
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology (NIHE), 1 Yec Xanh, Hanoi, Pham Dinh Ho, Hai Ba Trung, Vietnam
| | - Tien Dac Tran
- Centre for Disease Control, Ha Nam Province, Vietnam
- Department of Health, Ha Nam Province, Vietnam
| | | | - H. Rogier van Doorn
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| | - Thomas Kesteman
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| | - Sonia Lewycka
- Oxford University Clinical Research Unit (OUCRU), National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da District, Hanoi, Vietnam
- Centre of Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Roosevelt Dr, Headington, Oxford, OX3 7LG, United Kingdom
| |
Collapse
|
4
|
Rawson TM, Zhu N, Galiwango R, Cocker D, Islam MS, Myall A, Vasikasin V, Wilson R, Shafiq N, Das S, Holmes AH. Using digital health technologies to optimise antimicrobial use globally. Lancet Digit Health 2024; 6:e914-e925. [PMID: 39547912 DOI: 10.1016/s2589-7500(24)00198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 11/17/2024]
Abstract
Digital health technology (DHT) describes tools and devices that generate or process health data. The application of DHTs could improve the diagnosis, treatment, and surveillance of bacterial infection and the prevention of antimicrobial resistance (AMR). DHTs to optimise antimicrobial use are rapidly being developed. To support the global adoption of DHTs and the opportunities offered to optimise antimicrobial use consensus is needed on what data are required to support antimicrobial decision making. This Series paper will explore bacterial AMR in humans and the need to optimise antimicrobial use in response to this global threat. It will also describe state-of-the-art DHTs to optimise antimicrobial prescribing in high-income and low-income and middle-income countries, and consider what fundamental data are ideally required for and from such technologies to support optimised antimicrobial use.
Collapse
Affiliation(s)
- Timothy M Rawson
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; The David Price Evans Global Health & Infectious Diseases Group, The University of Liverpool, Liverpool, UK.
| | - Nina Zhu
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; The David Price Evans Global Health & Infectious Diseases Group, The University of Liverpool, Liverpool, UK
| | - Ronald Galiwango
- The African Centre of Excellence in Bioinformatics and Data Intensive Sciences, The Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Derek Cocker
- The David Price Evans Global Health & Infectious Diseases Group, The University of Liverpool, Liverpool, UK
| | | | - Ashleigh Myall
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; Centre for Mathematics of Precision Healthcare, Imperial College London, London, UK
| | - Vasin Vasikasin
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; Division of Infectious Diseases, Department of Internal Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Richard Wilson
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; The David Price Evans Global Health & Infectious Diseases Group, The University of Liverpool, Liverpool, UK
| | - Nusrat Shafiq
- Clinical Pharmacology Unit, Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, The University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Alison H Holmes
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK; Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; The David Price Evans Global Health & Infectious Diseases Group, The University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Obeng-Nkrumah N, Korang-Labi A, Kwao P, Egyir B, Nuertey BD, Hedidor G, Boateng G, Asah-Opoku K, Dankwah T, Okine E, Opintan JA. Extended-spectrum beta-lactamase-producing Enterobacterales in human health: Experience from the tricycle project, Ghana. PLoS One 2024; 19:e0310058. [PMID: 39527553 PMCID: PMC11554194 DOI: 10.1371/journal.pone.0310058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Vulnerable groups, such as pregnant women, are at increased risk of potentially life-threatening infections with extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) for both mother and newborn. However, data regarding ESBL-E carriage and associated risk factors in Ghanaian pregnant women remain scarce. OBJECTIVE This study aimed to determine the prevalence of ESBL-E carriage and its associated risk factors among pregnant women attending the antenatal clinic at the Korle Bu Teaching Hospital. METHODS A systematic sample of 700 pregnant women with gestational age ≥ 34 weeks attending the antenatal clinic at Korle Bu Teaching Hospital was included in the study. After administering a structured questionnaire to assess potential risk factors associated with ESBL-E carriage, patients were given a sterile stool container to submit at least 1 g of stool specimen. Recovered isolates from faecal specimens were identified using MALDI-TOF-MS technology. These isolates were then subjected to susceptibility testing and ESBL identification. A random subset of 24 ESBL-producing Escherichia coli isolates was whole-genome sequenced on the MiSeq Illumina platform. Risk factors associated with ESBL-E carriage were determined using multivariable logistic regression analysis. RESULTS Among the 700 pregnant women, 42% (294) carried ESBL-E. The predominant ESBL-producing Enterobacterales were Escherichia coli (95%). Fifty percent (50%) of ESBL-E were multidrug resistant isolates (MDRs). Whole-genome sequencing of 24 ESBL-producing E. coli isolates revealed that blaCTX-M-15 (96%) was the most prevalent ESBL gene type. Notably, most isolates belonged to commensal phylogenetic groups (A, B1, and C; 88%). Having a primary level of education (aOR 1.45, 95% CI 1.05-1.96) and consuming legumes as the main source of protein (aOR 0.17, 0.40-0.83) were significantly associated with intestinal carriage of ESBL-E. CONCLUSION This study identified a high prevalence of ESBL-E and MDR-ESBL-E carriage among pregnant women. Our findings underscore the urgent need for public health interventions to control the spread of AMR.
Collapse
Affiliation(s)
- Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Appiah Korang-Labi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Paul Kwao
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin D. Nuertey
- Community Health Department, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Gifty Boateng
- National Public Health and Reference Laboratory, Korle Bu, Ghana
| | - Kwaku Asah-Opoku
- Department of Obstetrics and Gynaecology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas Dankwah
- Department of Microbiology, Korle Bu Teaching Hospital, Korle Bu, Ghana
| | - Esther Okine
- Department of Microbiology, Korle Bu Teaching Hospital, Korle Bu, Ghana
| | - Japheth A. Opintan
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Keenan K, Papathomas M, Mshana SE, Asiimwe B, Kiiru J, Lynch AG, Kesby M, Neema S, Mwanga JR, Mushi MF, Jing W, Green DL, Olamijuwon E, Zhang Q, Sippy R, Fredricks KJ, Gillespie SH, Sabiiti W, Bazira J, Sloan DJ, Mmbaga BT, Kibiki G, Aanensen D, Stelling J, Smith VA, Sandeman A, Holden MTG. Intersecting social and environmental determinants of multidrug-resistant urinary tract infections in East Africa beyond antibiotic use. Nat Commun 2024; 15:9418. [PMID: 39482320 PMCID: PMC11528027 DOI: 10.1038/s41467-024-53253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
The global health crisis of antibacterial resistance (ABR) poses a particular threat in low-resource settings like East Africa. Interventions for ABR typically target antibiotic use, overlooking the wider set of factors which drive vulnerability and behaviours. In this cross-sectional study, we investigated the joint contribution of behavioural, environmental, socioeconomic, and demographic factors associated with higher risk of multi-drug resistant urinary tract infections (MDR UTIs) in Kenya, Tanzania, and Uganda. We sampled outpatients with UTI symptoms in healthcare facilities and linked their microbiology data with patient, household and community level data. Using bivariate statistics and Bayesian profile regression on a sample of 1610 individuals, we show that individuals with higher risk of MDR UTIs were more likely to have compound and interrelated social and environmental disadvantages: they were on average older, with lower education, had more chronic illness, lived in resource-deprived households, more likely to have contact with animals, and human or animal waste. This suggests that interventions to tackle ABR need to take account of intersectional socio-environmental disadvantage as a priority.
Collapse
Affiliation(s)
| | | | - Stephen E Mshana
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | | | - John Kiiru
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mike Kesby
- University of St Andrews, St Andrews, UK
| | | | - Joseph R Mwanga
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Martha F Mushi
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Wei Jing
- University of St Andrews, St Andrews, UK
| | | | | | - Qing Zhang
- University of St Andrews, St Andrews, UK
| | | | | | | | | | - Joel Bazira
- Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | | | | | | | | | | |
Collapse
|
7
|
Musicha P, Morse T, Cocker D, Mugisha L, Jewell CP, Feasey NA. Time to define One Health approaches to tackling antimicrobial resistance. Nat Commun 2024; 15:8782. [PMID: 39389965 PMCID: PMC11467174 DOI: 10.1038/s41467-024-53057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial resistance is a One Health problem that impacts humans, animals, and the environment. In this Comment, the authors discuss evidence for antimicrobial resistance transmission to humans, highlighting contrasting pictures between high- and low/middle-income settings.
Collapse
Affiliation(s)
- Patrick Musicha
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Derek Cocker
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- University of Liverpool, Liverpool, UK
| | - Lawrence Mugisha
- Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda
| | | | - Nicholas A Feasey
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of St. Andrews, St. Andrews, UK
| |
Collapse
|
8
|
Mwapasa T, Chidziwisano K, Mphasa M, Cocker D, Rimella L, Amos S, Feasey N, Morse T. Key environmental exposure pathways to antimicrobial resistant bacteria in southern Malawi: A SaniPath approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174142. [PMID: 38906299 PMCID: PMC11234251 DOI: 10.1016/j.scitotenv.2024.174142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) poses a severe global health threat, yet the transmission pathways of AMR within communal public environments, where humans and animals interact, remain poorly explored. This study investigated AMR risk pathways, prevalence, and seasonality of extended-spectrum β-lactamase (ESBL) producing E. coli and K. pneumoniae, and observed practices contributing to environmental contamination within urban, peri-urban, and rural Malawi. Using the SaniPath tool, in August 2020, transect walks across three Malawian study sites identified potential AMR exposure pathways, including drains, standing water, soil, and areas of communal hand contact. Subsequently, from September-2020 to August-2021, 1440 environmental samples were collected at critical points along exposure routes (n = 40/month from each site). These underwent microbiological analysis using chromogenic agar techniques to detect the presence of ESBL E. coli and ESBL K. pneumoniae. Results showed the highest ESBL prevalence in urban environments (68.1 %, 95%CI = 0.64-0.72, p < 0.001) with a higher ESBL presence seen in drains (58.8 %, 95%CI = 055-0.62, p < 0.001) and soil (54.1 %, 95%CI = 0.46-0.62, p < 0.001) compared to other pathways. Environmental contamination was attributed to unavailability and poor condition of sanitation and hygiene infrastructure based on key informant interviews with community leaders (n = 9) and confirmed by independent observation. ESBL prevalence varied between seasons (χ2 (2,N = 1440) = 10.89, p = 0.004), with the highest in the hot-dry period (55.8 % (n = 201)). Prevalence also increased with increased rainfall (for ESBL E.coli). We highlight that community environments are likely to be a crucial component in AMR transmission, evident in the abundance of ESBL bacteria in identified exposure pathways. Additionally, poor sanitation infrastructure and practices coupled with seasonal dynamics further affect the presence of ESBLs in communal environments. Therefore, a context appropriate whole system approach that tackles infrastructure and behavioural factors, supported by effective surveillance is required to impact AMR and a range of aligned development challenges in these settings.
Collapse
Affiliation(s)
- Taonga Mwapasa
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi.
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi; Department of Environmental Health, Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Madalitso Mphasa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Derek Cocker
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; David Price Evans Global Health and Infectious Disease Group, University of Liverpool, Liverpool, United Kingdom
| | - Lorenzo Rimella
- Department of Mathematics and Statistics, University of Lancaster, Lancaster, United Kingdom
| | - Stevie Amos
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tracy Morse
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
9
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
10
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
11
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
12
|
Milenkov M, Proux C, Rasolofoarison TL, Rakotomalala FA, Rasoanandrasana S, Rahajamanana VL, Rafalimanana C, Ravaoarisaina Z, Ramahatafandry IT, Westeel E, Petitjean M, Berti V, Marin J, Mullaert J, Han L, Clermont O, Raskine L, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Samison LH, Armand-Lefevre L. Implementation of the WHO Tricycle protocol for surveillance of extended-spectrum β-lactamase producing Escherichia coli in humans, chickens, and the environment in Madagascar: a prospective genomic epidemiology study. THE LANCET. MICROBE 2024; 5:100850. [PMID: 38908389 DOI: 10.1016/s2666-5247(24)00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health threat, affecting not only people but also animals and the environment. The One Health dimension of AMR is well known; however, data are lacking on the circulation of resistance-conferring genes, particularly in low-income countries. In 2017, WHO proposed a protocol called Tricycle, focusing on extended-spectrum β-lactamase (ESBL)-Escherichia coli surveillance in the three sectors (humans, animals, and the environment). We implemented Tricycle in Madagascar to assess ESBL-E coli prevalence and describe intrasector and intersector circulation of ESBL-E coli and plasmids. METHODS In this prospective study, we collected blood culture data from hospitalised patients with a suspected bloodstream infection processed from May 1, 2018, to April 30, 2019, and rectal swabs from healthy pregnant women from July 30, 2018, to April 27, 2019, both from three hospitals in Antananarivo, Madagascar; and caeca from farm chickens and surface waters from the Ikopa river, wastewater, and slaughterhouse effluents in the Antananarivo area, Madagascar, from April 9, 2018, to April 30, 2019. All samples were tested for ESBL-E coli. The genomes of all isolates were sequenced using a short-read method on NextSeq 500 and NovaSeq 6000 platforms (Illumina, San Diego, CA, USA) and those carrying plasmid replicons using an additional long-read method on a MinION platform (Oxford Nanopore Technologies, Oxford, UK). We characterised genomes of isolated strains (sequence type, resistance and virulence gene content, and plasmid replicons). We then compared isolates using the variant calling method (single-nucleotide polymorphism). FINDINGS Data from 1056 blood cultures were collected and 289 pregnant women, 246 chickens, and 28 surface waters were sampled. Of the blood cultures, 18 contained E coli, of which seven (39%) were ESBL. ESBL-E coli was present in samples from 86 (30%) of 289 pregnant women, 140 (57%) of 246 chickens, and 28 (100%) of 28 surface water samples. The wet season (November to April) was associated with higher rates of carriage in humans (odds ratio 3·08 [1·81-5·27]) and chickens (2·79 [1·65-4·81]). Sequencing of 277 non-duplicated isolates (82 from pregnant women, 118 from chickens, and 77 from environmental samples) showed high genetic diversity (90 sequence types identified) with sector-specific genomic features. Single nucleotide polymorphism (SNP) analysis revealed that 169 (61%) of 277 isolates grouped into 44 clusters (two or more isolates) of closely related isolates (<40 SNPs), of which 24 clusters contained isolates from two sectors and five contained isolates from all three sectors. ESBL genes were all blaCTX-M variants (215 [78%] of 277 being blaCTX-M-15) and were located on a plasmid in 113 (41%) of 277 isolates. These ESBL-carrying plasmids were mainly IncF (63 [55%] of 114; one strain carried two plasmids) and IncY (42 [37%] of 114). The F31/36:A4:B1 (n=13) and F-:A-:B53 (n=8) pMLST subtypes, and the IncY plasmids, which were all highly conserved, were observed in isolates of differing genetic backgrounds from all sectors and were transferable in vitro by conjugation. INTERPRETATION Despite sector-specific population structures, both ESBL-E coli strains and plasmids are circulating among humans, chickens, and the environment in Antananarivo, Madagascar. The Tricycle protocol can be implemented in a low-income country and represents a powerful tool for investigating dissemination of AMR from a One Health perspective. FUNDING Fondation Mérieux and INSERM, Université Paris Cité.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France; Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Caroline Proux
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | | | - Valentine Berti
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France
| | - Julie Marin
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Université Sorbonne Paris Nord, IAME, INSERM UMR 1137, Bobigny, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Lien Han
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Hubert Endtz
- Fondation Mérieux, Lyon, France; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Luc Hervé Samison
- Centre d'Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Laurence Armand-Lefevre
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France.
| |
Collapse
|
13
|
Lewnard JA, Charani E, Gleason A, Hsu LY, Khan WA, Karkey A, Chandler CIR, Mashe T, Khan EA, Bulabula ANH, Donado-Godoy P, Laxminarayan R. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: an evidence review and modelling analysis. Lancet 2024; 403:2439-2454. [PMID: 38797180 DOI: 10.1016/s0140-6736(24)00862-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
National action plans enumerate many interventions as potential strategies to reduce the burden of bacterial antimicrobial resistance (AMR). However, knowledge of the benefits achievable by specific approaches is needed to inform policy making, especially in low-income and middle-income countries (LMICs) with substantial AMR burden and low health-care system capacity. In a modelling analysis, we estimated that improving infection prevention and control programmes in LMIC health-care settings could prevent at least 337 000 (95% CI 250 200-465 200) AMR-associated deaths annually. Ensuring universal access to high-quality water, sanitation, and hygiene services would prevent 247 800 (160 000-337 800) AMR-associated deaths and paediatric vaccines 181 500 (153 400-206 800) AMR-associated deaths, from both direct prevention of resistant infections and reductions in antibiotic consumption. These estimates translate to prevention of 7·8% (5·6-11·0) of all AMR-associated mortality in LMICs by infection prevention and control, 5·7% (3·7-8·0) by water, sanitation, and hygiene, and 4·2% (3·4-5·1) by vaccination interventions. Despite the continuing need for research and innovation to overcome limitations of existing approaches, our findings indicate that reducing global AMR burden by 10% by the year 2030 is achievable with existing interventions. Our results should guide investments in public health interventions with the greatest potential to reduce AMR burden.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA.
| | - Esmita Charani
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Alec Gleason
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Wasif Ali Khan
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Clare I R Chandler
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Tapfumanei Mashe
- One Health Office, Ministry of Health and Child Care, Harare, Zimbabwe; Health System Strengthening Unit, WHO, Harare, Zimbabwe
| | - Ejaz Ahmed Khan
- Department of Pediatrics, Shifa Tameer-e-Millat University, Shifa International Hospital, Islamabad, Pakistan
| | - Andre N H Bulabula
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Pilar Donado-Godoy
- AMR Global Health Research Unit, Colombian Integrated Program of Antimicrobial Resistance Surveillance, Corporación Colombiana de Investigación Agropecuaria, Cundinamarca, Colombia
| | - Ramanan Laxminarayan
- One Health Trust, Bengaluru, India; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Mendelson M, Laxminarayan R, Limmathurotsakul D, Kariuki S, Gyansa-Lutterodt M, Charani E, Singh S, Walia K, Gales AC, Mpundu M. Antimicrobial resistance and the great divide: inequity in priorities and agendas between the Global North and the Global South threatens global mitigation of antimicrobial resistance. Lancet Glob Health 2024; 12:e516-e521. [PMID: 38278160 DOI: 10.1016/s2214-109x(23)00554-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024]
Abstract
To limit the catastrophic effects of the increasing bacterial resistance to antimicrobials on health, food, environmental, and geopolitical security, and ensure that no country or region is left behind, a coordinated global approach is required. In this Viewpoint, we argue that the diverging resource availabilities, needs, and priorities of the Global North and the Global South in terms of the actions required to mitigate the antimicrobial resistance pandemic are a direct threat to success. We argue that evidence suggests a need to prioritise and support infection prevention interventions (ie, clean water and safe sanitation, increased vaccine coverage, and enhanced infection prevention measures for food production in the Global South contrary to the focus on research and development of new antibiotics in the Global North) and to recalibrate global funding resources to address this need. We call on global leaders to redress the current response, which threatens mitigation of the antimicrobial resistance pandemic.
Collapse
Affiliation(s)
- Marc Mendelson
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | | | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Samuel Kariuki
- Drugs for Neglected Diseases Initiative, East Africa Regional Office, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Esmita Charani
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sanjeev Singh
- Department of Infection Control and Epidemiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Kamini Walia
- AMR Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Alvarez L, Carhuaricra D, Palomino-Farfan J, Calle S, Maturrano L, Siuce J. Genomic Profiling of Multidrug-Resistant Swine Escherichia coli and Clonal Relationship to Human Isolates in Peru. Antibiotics (Basel) 2023; 12:1748. [PMID: 38136782 PMCID: PMC10740509 DOI: 10.3390/antibiotics12121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The misuse of antibiotics is accelerating antimicrobial resistance (AMR) in Escherichia coli isolated from farm animals. The genomes of ten multidrug-resistant (MDR) E. coli isolates from pigs were analyzed to determine their sequence types, serotypes, virulence, and AMR genes (ARGs). Additionally, the relationship was evaluated adding all the available genomes of Peruvian E. coli from humans using the cgMLST + HierCC scheme. Two aEPEC O186:H11-ST29 were identified, of which H11 and ST29 are reported in aEPEC isolates from different sources. An isolate ETEC-O149:H10-ST100 was identified, considered a high-risk clone that is frequently reported in different countries as a cause of diarrhea in piglets. One ExPEC O101:H11-ST167 was identified, for which ST167 is an international high-risk clone related to urinary infections in humans. We identified many ARGs, including extended-spectrum β-lactamase genes, and one ETEC harboring the mcr-1 gene. CgMLST + HierCC analysis differentiated three clusters, and in two, the human isolates were grouped with those of swine in the same cluster. We observed that Peruvian swine MDR E. coli cluster with Peruvian E. coli isolates from healthy humans and from clinical cases, which is of great public health concern and evidence that AMR surveillance should be strengthened based on the One Health approach.
Collapse
Affiliation(s)
- Luis Alvarez
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Dennis Carhuaricra
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Joel Palomino-Farfan
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Sonia Calle
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Lenin Maturrano
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Juan Siuce
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| |
Collapse
|
16
|
Barnes KG, Levy JI, Gauld J, Rigby J, Kanjerwa O, Uzzell CB, Chilupsya C, Anscombe C, Tomkins-Tinch C, Mbeti O, Cairns E, Thole H, McSweeney S, Chibwana MG, Ashton PM, Jere KC, Meschke JS, Diggle P, Cornick J, Chilima B, Jambo K, Andersen KG, Kawalazira G, Paterson S, Nyirenda TS, Feasey N. Utilizing river and wastewater as a SARS-CoV-2 surveillance tool in settings with limited formal sewage systems. Nat Commun 2023; 14:7883. [PMID: 38036496 PMCID: PMC10689440 DOI: 10.1038/s41467-023-43047-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has profoundly impacted health systems globally and robust surveillance has been critical for pandemic control, however not all countries can currently sustain community pathogen surveillance programs. Wastewater surveillance has proven valuable in high-income settings, but less is known about the utility of water surveillance of pathogens in low-income countries. Here we show how wastewater surveillance of SAR-CoV-2 can be used to identify temporal changes and help determine circulating variants quickly. In Malawi, a country with limited community-based COVID-19 testing capacity, we explore the utility of rivers and wastewater for SARS-CoV-2 surveillance. From May 2020-May 2022, we collect water from up to 112 river or defunct wastewater treatment plant sites, detecting SARS-CoV-2 in 8.3% of samples. Peak SARS-CoV-2 detection in water samples predate peaks in clinical cases. Sequencing of water samples identified the Beta, Delta, and Omicron variants, with Delta and Omicron detected well in advance of detection in patients. Our work highlights how wastewater can be used to detect emerging waves, identify variants of concern, and provide an early warning system in settings with no formal sewage systems.
Collapse
Affiliation(s)
- Kayla G Barnes
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Joshua I Levy
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jillian Gauld
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan Rigby
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Christopher B Uzzell
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chisomo Chilupsya
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscombe
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Christopher Tomkins-Tinch
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Omar Mbeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Herbert Thole
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Shannon McSweeney
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Marah G Chibwana
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Philip M Ashton
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - John Scott Meschke
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Peter Diggle
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jennifer Cornick
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
| | - Benjamin Chilima
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Public Health Institute of Malawi, Lilongwe, Malawi
| | - Kristian G Andersen
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Gift Kawalazira
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Tonney S Nyirenda
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
17
|
Ramatla T, Mafokwane T, Lekota K, Monyama M, Khasapane G, Serage N, Nkhebenyane J, Bezuidenhout C, Thekisoe O. "One Health" perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2023; 22:88. [PMID: 37740207 PMCID: PMC10517531 DOI: 10.1186/s12941-023-00638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial isolates that produce extended-spectrum β-lactamases (ESBLs) contribute to global life-threatening infections. This study conducted a systematic review and meta-analysis on the global prevalence of ESBLs in co-existing E. coli and K. pneumoniae isolated from humans, animals and the environment. METHODS The systematic review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) [ID no: CRD42023394360]. This study was carried out following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. One hundred and twenty-six eligible studies published on co-existing antibiotic resistance in E. coli and K. pneumoniae between 1990 and 2022 were included. RESULTS The pooled prevalence of ESBL-producing E. coli and K. pneumoniae was 33.0% and 32.7% for humans, 33.5% and 19.4% for animals, 56.9% and 24.2% for environment, 26.8% and 6.7% for animals/environment, respectively. Furthermore, the three types of resistance genes that encode ESBLs, namely blaSHVblaCTX-M,blaOXA, and blaTEM, were all detected in humans, animals and the environment. CONCLUSIONS The concept of "One-Health" surveillance is critical to tracking the source of antimicrobial resistance and preventing its spread. The emerging state and national surveillance systems should include bacteria containing ESBLs. A well-planned, -implemented, and -researched alternative treatment for antimicrobial drug resistance needs to be formulated.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Tshepo Mafokwane
- Department of Life and Consumer Sciences, University of South Africa, Florida, 1710, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Maropeng Monyama
- Department of Life and Consumer Sciences, University of South Africa, Florida, 1710, South Africa
| | - George Khasapane
- Department of Life Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Naledi Serage
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Jane Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|