1
|
Zammit AR, Yu L, Oveisgharan S, Schneider JA, Bennett DA, Buchman AS. Temporal Sequence of Incident Mild Cognitive Impairment, Incident Parkinsonism, and Risk of Death in Unimpaired Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 80:glae275. [PMID: 39545594 PMCID: PMC11701745 DOI: 10.1093/gerona/glae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) and parkinsonism affect many older adults. The objective of this study was to determine the sequence of their occurrence and associated risk of death. METHODS A total of 1255 community-dwelling unimpaired participants from 2 epidemiological cohorts were examined annually. MCI was based on neuropsychological testing and parkinsonism was based on the motor portion of the modified Unified Parkinson's Disease Rating Scale. A multistate Cox proportional hazards model simultaneously examined incidences of MCI, parkinsonism, and death. RESULTS The average age at baseline was 76.5 years (standard deviation [SD] = 7.2) and 73% were female. Incident MCI occurred almost as commonly as incident parkinsonism, yet compared with no impairment, the risk of death was higher for MCI (hazard ratio [HR] = 1.82, 95% confidence interval [CI] = 1.34, 2.47), but it was not different for parkinsonism (HR = 1.29; 95% CI =0.95, 1.75). The risk of death for participants with incident MCI who progressed to parkinsonism (40%) was not significantly different from those with MCI alone (HR = 1.25, 95% CI = 0.93, 1.69). However, the risk of death for participants with incident parkinsonism who progressed to MCI (51%) was significantly higher than those who did not progress (HR = 1.67, 95% CI = 1.27, 2.18), indicating that the risk of death is highest with the incidence of MCI. CONCLUSIONS The varied patterns of sequential occurrence of cognitive and motor impairment and associated risk of death suggest much greater heterogeneity than previously recognized. Further work is needed to determine the biology underlying the temporal evolution of these phenotypes, and if identification of the various subtypes improves risk stratification.
Collapse
Affiliation(s)
- Andrea R Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Aron S Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Huang B, Zhang Y, Ruan G, Yu X, Liu Q, Zhang M, Yu M, Chen A, Liang Y, Xie L, Luo L. The Impact of SGLT1 Inhibition on Frailty and Sarcopenia: A Mediation Mendelian Randomization Study. J Cachexia Sarcopenia Muscle 2024; 15:2693-2704. [PMID: 39474649 PMCID: PMC11634476 DOI: 10.1002/jcsm.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Although pharmacological effects of SGLT2 inhibitors on the development of frailty and sarcopenia were known, the role of SGLT1 remained less clear. The present study investigated the possible effect of SGLT1 inhibition on these conditions and explored potential mediators. METHODS A two-sample Mendelian randomization (MR) analysis was performed to assess the effect of SGLT1 inhibition on frailty index (FI) and low grip strength in individuals aged 60 years and older using both the FNIH and EWGSOP criteria. Subsequently, a two-step MR analysis was conducted to investigate the mediating role of insulin resistance phenotype and identify potential mediators of the effect of SGLT1 inhibition on the FI and low grip strength from 1558 plasma proteins and 1352 metabolites. RESULTS Genetically predicted SGLT1 inhibition was associated with decreased FI (β: -0.290 [95% CI: -0.399, -0.181]) and reduced risk of low grip strength in individuals aged 60 years and older under both FNIH (β: -0.796 [95% CI: -1.216, -0.376]) and EWGSOP criteria (β: -0.287 [95% CI: -0.532, -0.041]). The two-step MR analysis demonstrated the role of insulin resistance phenotype in mediating SGTL1 inhibition on alleviating frailty (mediation proportion = 19.56% [95% CI: 8.42%, 30.70%]). After screening, 24 proteins and 16 metabolites were identified as mediators of the impact of SGLT1 inhibition on FI. Additionally, 13 proteins and 16 metabolites were found to mediate the effect of SGLT1 inhibition on low grip strength according to FNIH criteria while 22 proteins and 6 metabolites were shown to mediate the impact of SGLT1 inhibition on low grip strength under EWGSOP criteria. CONCLUSIONS SGLT1 inhibition potentially mitigated frailty and sarcopenia through several biological mediators, shedding new light for therapeutic intervention.
Collapse
Affiliation(s)
- Bang‐Bang Huang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Jie Zhang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
| | - Guang‐Feng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xing Yu
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Key Laboratory of Molecular Neurology and Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Mei‐Jin Zhang
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of CardiologyFirst Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- Department of Cardiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ming‐Zhong Yu
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ai Chen
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ye‐Bei Liang
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Liang‐Di Xie
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Li Luo
- Department of GeriatricsFirst Affiliated Hospital of Fujian Medical University, Institute of Neuroscience, Fujian Medical UniversityFuzhouChina
- Fujian Hypertension Research InstituteFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Branch of National Clinical Research Center for Aging and MedicineFirst Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
3
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
4
|
Cotton K, Ayers E, Jin Y, Beauchet O, Derby CA, Lipton RB, Katz M, Galery K, Gaudreau P, Verghese J. Elevated Blood Homocysteine Increases the Risk of Incident Motoric Cognitive Risk Syndrome: A Two-Cohort Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae114. [PMID: 38671552 PMCID: PMC11157967 DOI: 10.1093/gerona/glae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Motoric Cognitive Risk (MCR) syndrome, a predementia syndrome characterized by cognitive complaints and slow gait, may have an underlying vascular etiology. Elevated blood levels of homocysteine, a known vascular risk factor, have been linked to physical and cognitive decline in older adults, though the relationship with MCR is unknown. We aimed to identify the association between homocysteine and MCR risk. METHODS We examined the association between baseline homocysteine levels and incident MCR using Cox proportional hazard models in 1826 community-dwelling older adults (55% women) from 2 cohorts (Einstein Aging Study [EAS] and Quebec Longitudinal Study on Nutrition and Successful Aging [NuAge]). We calculated hazard ratios (HR) with 95% confidence intervals (CI), for each cohort as well as stratified by sex and vascular disease/risk factors. RESULTS Median follow-up time was 2.2 years in EAS and 3.0 years in NuAge. Individuals with elevated baseline homocysteine levels (>14 µmol/L) had a significantly higher risk of incident MCR compared to those with normal levels in NuAge (HR 1.41, 95% CI: 1.01-1.97, p = .04), after adjusting for covariates. Our exploratory stratified analyses found that these associations were significant only in men with vascular disease/risk factors. CONCLUSIONS Higher blood homocysteine levels are associated with an increased risk of developing MCR in older adults, particularly in men with vascular disease or vascular risk factors.
Collapse
Affiliation(s)
- Kelly Cotton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ying Jin
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Olivier Beauchet
- Research Centre of the Geriatric University Institute of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Carol A Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mindy Katz
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kevin Galery
- Research Centre of the Geriatric University Institute of Montreal, Montreal, Quebec, Canada
| | - Pierrette Gaudreau
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Nichols E, Rabin JS. Declining motor and cognitive functioning and the role of gait in dementia. THE LANCET. HEALTHY LONGEVITY 2024; 5:e308-e309. [PMID: 38582096 DOI: 10.1016/s2666-7568(24)00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Affiliation(s)
- Emma Nichols
- Center for Economic and Social Research and Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Jennifer S Rabin
- Dr Sandra Black Center for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| |
Collapse
|