1
|
Innella K, Levidy MF, Kadkoy Y, Lin A, Selles M, Sanchez A, Weiner A, Greendyk J, Moriarty B, Lauritsen K, Lopez J, Teitelbaum M, Fisher M, Mendiratta D, Ahn DB, Ippolitto J, Paglia DN, Cottrell J, O'Connor JP, Benevenia J, Lin SS. Local zinc treatment enhances fracture callus properties in diabetic rats. J Orthop Res 2022. [PMID: 36515300 DOI: 10.1002/jor.25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The effects of locally applied zinc chloride (ZnCl2 ) on early and late-stage parameters of fracture healing were evaluated in a diabetic rat model. Type 1 Diabetes has been shown to negatively impact mechanical parameters of bone as well as biologic markers associated with bone healing. Zinc treatments have been shown to reverse those outcomes in tests of nondiabetic and diabetic animals. This study is the first to assess the efficacy of a noncarrier mediated ZnCl2 on bony healing in diabetic animals. This is a promising basic science approach which may lead to benefits for diabetic patients in the future. Treatment and healing were assessed through quantification of callus zinc, radiographic scoring, microcomputed tomography (µCT), histomorphometry, and mechanical testing. Local ZnCl2 treatment increased callus zinc levels at 1 and 3 days after fracture (p ≤ 0.025). Femur fractures treated with ZnCl2 showed increased mechanical properties after 4 and 6 weeks of healing. Histomorphometry of the ZnCl2 -treated fractures found increased callus cartilage area at Day 7 (p = 0.033) and increased callus bone area at Day 10 (p = 0.038). In contrast, callus cartilage area was decreased (p < 0.01) after 14 days in the ZnCl2 -treated rats. µCT analysis showed increased bone volume in the fracture callus of ZnCl2 -treated rats at 6 weeks (p = 0.0012) with an associated increase in the proportion of µCT voxel axial projections (Z-rays) spanning the fracture site. The results suggest that local ZnCl2 administration improves callus chondrogenesis leading to greater callus bone formation and improved fracture healing in diabetic rats.
Collapse
Affiliation(s)
- Kevin Innella
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Michael F Levidy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yazan Kadkoy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Anthony Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus Selles
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Alexandra Sanchez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adam Weiner
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua Greendyk
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Brian Moriarty
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katherine Lauritsen
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jonathan Lopez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marc Teitelbaum
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mark Fisher
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dhruv Mendiratta
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David B Ahn
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Ippolitto
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David N Paglia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica Cottrell
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - J Patrick O'Connor
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sheldon S Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
2
|
Sadeghifar A, Sheibani M, Joukar S, Dabiri S, Alavi S, Azari O, Vosoghi D, Zeynali Y, Zeynali Y, Shahraki M, Torghabe A, Rostamzadeh F, Nasri A. The Effect of Waterpipe Tobacco Smoking on Bone Healing Following Femoral Fractures in Male Rats. Front Surg 2021; 8:722446. [PMID: 34671637 PMCID: PMC8520932 DOI: 10.3389/fsurg.2021.722446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Given the increasing use of waterpipe tobacco smoking in the world and its unknown effects on bone healing, this study investigated the repairing of femoral bone fractures in rats exposed to waterpipe tobacco smoking (WTS). Main Methods: This study involved 40 male Wistar rats that were divided into two groups, including the femoral fracture (Fx) and the Fx + WTS groups. Each group was divided into two subgroups that were evaluated for bone healing 28 and 42 days after femoral fracture. After fixing the fractured femur, the healing process was evaluated by radiography, pathological indicators, and a measurement of the blood levels of vascular endothelial growth factor (VEGF), parathyroid hormone (PTH), Ca ++, transforming growth factor-beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Additionally, the density of VEGF and CD34 in fracture tissue was investigated by immunohistochemistry. Key Findings: Radiographic findings showed that factors related to the earlier stages of bone healing had higher scores in the Fx + WTS28 and 42 subgroups in comparison to the Fx groups. The density of VEGF and CD34 showed that the angiogenesis processes were different in the bone fracture area and callus tissue in the Fx +WTS subgroups. The serum levels of VEGF, TGF-β, and IGF-1 were significantly lower in the Fx +WTS42 group, and PTH in the Fx +WTS28 group was higher than that in the other groups. Significance: The findings showed the disturbance and delay in the femoral fracture union in rats exposed to hookah smoke. This is partly due to the reduction of molecular stimuli of bone synthesis and the attenuation of quantitative angiogenesis.
Collapse
Affiliation(s)
- Amirreza Sadeghifar
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Sheibani
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Samanehsadat Alavi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Azari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Darioush Vosoghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yas Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasman Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Shahraki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Amirhesam Torghabe
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Jin M, Seo SH, Kim BS, Hwang S, Kang YG, Shin JW, Cho KH, Byeon J, Shin MC, Kim D, Yoon C, Min KA. Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharm Res 2021; 38:1455-1466. [PMID: 34398405 DOI: 10.1007/s11095-021-03091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.
Collapse
Affiliation(s)
| | | | - Bo Seok Kim
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Jimi Byeon
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Changhan Yoon
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea. .,Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
4
|
Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021; 13:1083. [PMID: 34371775 PMCID: PMC8309025 DOI: 10.3390/pharmaceutics13071083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
With increasing obesity and an ageing population, health complications are also on the rise, such as the need to replace a joint with an artificial one. In both humans and animals, the integration of the implant is crucial, and bioactive coatings play an important role in bone tissue engineering. Since bone tissue engineering is about designing an implant that maximally mimics natural bone and is accepted by the tissue, the search for optimal materials and therapeutic agents and their concentrations is increasing. The incorporation of growth factors (GFs) in a bioactive coating represents a novel approach in bone tissue engineering, in which osteoinduction is enhanced in order to create the optimal conditions for the bone healing process, which crucially affects implant fixation. For the application of GFs in coatings and their implementation in clinical practice, factors such as the choice of one or more GFs, their concentration, the coating material, the method of incorporation, and the implant material must be considered to achieve the desired controlled release. Therefore, the avoidance of revision surgery also depends on the success of the design of the most appropriate bioactive coating. This overview considers the integration of the most common GFs that have been investigated in in vitro and in vivo studies, as well as in human clinical trials, with the aim of applying them in bioactive coatings. An overview of the main therapeutic agents that can stimulate cells to express the GFs necessary for bone tissue development is also provided. The main objective is to present the advantages and disadvantages of the GFs that have shown promise for inclusion in bioactive coatings according to the results of numerous studies.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
5
|
Ermolin VI, Mokhirev MA, Romanova EM. [The use of platelet rich plasma in bone-reconstructive in cranio-maxillo-facial surgery]. STOMATOLOGII︠A︡ 2020; 99:122-126. [PMID: 33034189 DOI: 10.17116/stomat202099051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRP-therapy - method, based on local application platelet rich plasma. Efficiency of this method is investigated and approved both in vitro and in vivo. PRP includes growth factors: platelet derived growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, vascular endothelial growth factor, which significantly accelerate regenerative process. PRP-therapy reduces pain syndrome, accelerates tissue regeneration and has an anti-inflammatory effect.
Collapse
Affiliation(s)
- V I Ermolin
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Mokhirev
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - E M Romanova
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif 2020; 53:e12904. [PMID: 32997394 PMCID: PMC7653269 DOI: 10.1111/cpr.12904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Most bone fracture heals through enchondral bone formation that relies on the involvement of periosteal progenitor cells. However, the identity of periosteal progenitor cells and the regulatory mechanism of their proliferation and differentiation remain unclear. The aim of this study was to investigate whether Gli1-CreERT2 can identify a population of murine periosteal progenitor cells and the role of TGF-β signalling in periosteal progenitor cells on fracture healing. MATERIALS AND METHODS Double heterozygous Gli1-CreERT2 ;Rosa26-tdTomatoflox/wt mice were sacrificed at different time points for tracing the fate of Gli1+ cells in both intact and fracture bone. Gli1-CreERT2 -mediated Tgfbr2 knockout (Gli1-CreERT2 ;Tgfbr2flox/flox ) mice were subjected to fracture surgery. At 4, 7, 10, 14 and 21 days post-surgery, tibia samples were harvested for tissue analyses including μCT, histology, real-time PCR and immunofluorescence staining. RESULTS Through cell lineage-tracing experiments, we have revealed that Gli1-CreER T2 can be used to identify a subpopulation of periosteal progenitor cells in vivo that persistently reside in periosteum and contribute to osteochondral elements during fracture repair. During the healing process, TGF-β signalling is continually activated in the reparative Gli1+ periosteal cells. Conditional knockout of Tgfbr2 in these cells leads to a delayed and impaired enchondral bone formation, at least partially due to the reduced proliferation and chondrogenic and osteogenic differentiation of Gli1+ periosteal cells. CONCLUSIONS TGF-β signalling plays an essential role on fracture repair via regulating enchondral bone formation process of Gli1+ periosteal cells.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinwen Ge
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Fang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yu
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zou
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng Zhang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping-Er Wang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Li W, Hu J, Ji P, Zhu S, Zhu Y. Oral administration of bovine lactoferrin accelerates the healing of fracture in ovariectomized rats. J Bone Miner Metab 2020; 38:648-657. [PMID: 32350616 DOI: 10.1007/s00774-020-01105-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Lactoferrin has recently been reported for its potent bone growth effects. However, the effects of lactoferrin on the healing process of fragility fracture have not yet been studied, so the purpose of this study is to investigate whether oral administration of lactoferrin can promote the fracture healing in an OVX animal model. MATERIALS AND METHODS Three months after bilateral ovariectomy, all rats underwent unilateral tibial osteotomy and were then randomly divided into control group and bovine lactoferrin (bLF) group. At 4 and 8 weeks post-fracture, animals were sacrificed, and the fractured tibiae and serum samples were collected for evaluation. RESULTS Our results showed that bLF treatment not only accelerated the bone growth at an early stage of OPF healing but also shortened the remolding process of OPF healing. When compared to control group, bLF treatment induced a significant rise in callus BMD (by 35.0% at 4 weeks and by 39.7% at 8 weeks; both p < 0.05) consistent with enhanced biomechanical strength of the callus, with ultimate force increased by 3.39-fold at 4 weeks (p < 0.05) and 1.95-fold at 8 weeks (p < 0.05). Besides, bLF administration resulted in a substantial increase in serum levels of BALP and a significant decrease in serum levels of TRAP 5b and TNF-α. Moreover, both the RANKL/OPG mRNA ratio and the expression of TNF-α in the callus of bLF-treated group were markedly lower than those in the control group. CONCLUSIONS At a dose of 85mg/kg/day orally administrated bLF potently promoted the bone healing following tibial fracture in OVX rats.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jing Hu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ping Ji
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, 401331, China
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Yuzhong District, Yixueyuan Road 1#, Chongqing, 400016, China.
| |
Collapse
|
8
|
Park J, Yan G, Kwon KC, Liu M, Gonnella PA, Yang S, Daniell H. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials 2020; 233:119591. [PMID: 31870566 PMCID: PMC6990632 DOI: 10.1016/j.biomaterials.2019.119591] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Human insulin-like growth factor-1 (IGF-1) plays important roles in development and regeneration of skeletal muscles and bones but requires daily injections or surgical implantation. Current clinical IGF-1 lacks e-peptide and is glycosylated, reducing functional efficacy. In this study, codon-optimized Pro-IGF-1 with e-peptide (fused to GM1 receptor binding protein CTB or cell penetrating peptide PTD) was expressed in lettuce chloroplasts to facilitate oral delivery. Pro-IGF-1 was expressed at high levels in the absence of the antibiotic resistance gene in lettuce chloroplasts and was maintained in subsequent generations. In lyophilized plant cells, Pro-IGF-1 maintained folding, assembly, stability and functionality up to 31 months, when stored at ambient temperature. CTB-Pro-IGF-1 stimulated proliferation of human oral keratinocytes, gingiva-derived mesenchymal stromal cells and mouse osteoblasts in a dose-dependent manner and promoted osteoblast differentiation through upregulation of ALP, OSX and RUNX2 genes. Mice orally gavaged with the lyophilized plant cells significantly increased IGF-1 levels in sera, skeletal muscles and was stable for several hours. When bioencapsulated CTB-Pro-IGF-1 was gavaged to femoral fractured diabetic mice, bone regeneration was significantly promoted with increase in bone volume, density and area. This novel delivery system should increase affordability and patient compliance, especially for treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- J Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Yan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K-C Kwon
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Liu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - H Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Verboket RD, Anbar B, Söhling N, Kontradowitz K, Marzi I, Ghanaati S, Henrich D. Changes in platelet-rich fibrin composition after trauma and surgical intervention. Platelets 2020; 31:1069-1079. [DOI: 10.1080/09537104.2020.1714575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- René D. Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Bechir Anbar
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Nicolas Söhling
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Kerstin Kontradowitz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Elimelech R, Khoury N, Tamari T, Blumenfeld I, Gutmacher Z, Zigdon‐Giladi H. Use of transforming growth factor‐β loaded onto β‐tricalcium phosphate scaffold in a bone regeneration rat calvaria model. Clin Implant Dent Relat Res 2019; 21:593-601. [DOI: 10.1111/cid.12775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/13/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Rina Elimelech
- Department of Periodontology, School of Graduate DentistryRambam Health Care Campus Haifa Israel
| | - Nizar Khoury
- Research Institute for Bone RepairRambam Health Care Campus Haifa Israel
| | - Tal Tamari
- Research Institute for Bone RepairRambam Health Care Campus Haifa Israel
| | - Israel Blumenfeld
- Department of Prosthetic Dentistry, School of Graduate DentistryRambam Health Care Campus Haifa Israel
| | - Zvi Gutmacher
- Department of Prosthetic Dentistry, School of Graduate DentistryRambam Health Care Campus Haifa Israel
| | - Hadar Zigdon‐Giladi
- Department of Periodontology, School of Graduate DentistryRambam Health Care Campus Haifa Israel
| |
Collapse
|
11
|
Lalzawmliana V, Anand A, Kumar V, Das P, Devi KB, Mukherjee J, Maji AK, Kundu B, Roy M, Nandi SK. Potential of growth factor incorporated mesoporous bioactive glass for in vivo bone regeneration. J Mech Behav Biomed Mater 2018; 91:182-192. [PMID: 30583264 DOI: 10.1016/j.jmbbm.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023]
Abstract
Mesoporous bioactive glass (MBG) has drawn much attention due to its superior surface texture, porosity and bioactive characteristics. Aim of the present study is to synthesize MBG using different surfactants, viz., hexadecyltrimethylamonium(CTAB) (M1), poly-ethylene glycol (PEG) (M2) and pluronic P123 (M3); bioactivity study; and to understand their bone regeneration efficacy in combination with insulin-like growth factors (IGF-1) in animal bone defect model. SBF study revealed the formation of calcium carbonate (CaCO3) and hydroxyapatite (HAp) phase over 14 days. Formation of apatite layer was further confirmed by FTIR, FESEM and EDX analysis. M1 and M2 showed improved crystallinity, while M3 showed slightly decrease in crystalline peak of CaCO3 and enhanced HAp phase. More Ca-P layer formed in M1 and M2 supported the in vivo experiments subsequently. Degree of new bone formation for all MBGs were high, i.e., M1 (80.7 ± 2.9%), M2 (74.4 ± 2.4%) and M3 (70.1 ± 1.9%) compared to BG (66.9 ± 1.8%). In vivo results indicated that the materials were non-toxic, biodegradable, biocompatible, and is suitable as bone replacement materials. Thus, we concluded that growth factor loaded MBG is a promising candidate for bone tissue engineering application.
Collapse
Affiliation(s)
- V Lalzawmliana
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Akrity Anand
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Vinod Kumar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - K Bavya Devi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Jayanta Mukherjee
- Department of Animal Resources Development Department, Government of West Bengal, Kolkata, India
| | - Asit Kumar Maji
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India.
| | - Mangal Roy
- Department of Animal Resources Development Department, Government of West Bengal, Kolkata, India.
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
12
|
Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, Bönig H, Henrich D, Marzi I. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018; 44:649-665. [PMID: 29352347 PMCID: PMC6182650 DOI: 10.1007/s00068-018-0906-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Reconstruction of long segmental bone defects is demanding for patients and surgeons, and associated with long-term treatment periods and substantial complication rates in addition to high costs. While defects up to 4-5 cm length might be filled up with autologous bone graft, heterologous bone from cadavers, or artificial bone graft substitutes, current options to reconstruct bone defects greater than 5 cm consist of either vascularized free bone transfers, the Masquelet technique or the Ilizarov distraction osteogenesis. Alternatively, autologous cell transplantation is an encouraging treatment option for large bone defects as it eliminates problems such as limited autologous bone availability, allogenic bone immunogenicity, and donor-site morbidity, and might be used for stabilizing loose alloplastic implants. METHODS The authors show different cell therapies without expansion in culture, with ex vivo expansion and cell therapy in local bone defects, bone healing and osteonecrosis. Different kinds of cells and scaffolds investigated in our group as well as in vivo transfer studies and BMC used in clinical phase I and IIa clinical trials of our group are shown. RESULTS Our research history demonstrated the great potential of various stem cell species to support bone defect healing. It was clearly shown that the combination of different cell types is superior to approaches using single cell types. We further demonstrate that it is feasible to translate preclinically developed protocols from in vitro to in vivo experiments and follow positive convincing results into a clinical setting to use autologous stem cells to support bone healing.
Collapse
Affiliation(s)
- R. Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Leiblein
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Nau
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Janko
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Bellen
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - H. Bönig
- Department of Transfusion Medicine and Immune Hematology, University Hospital Frankfurt and DRK Blood Donor Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - D. Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - I. Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Reible B, Schmidmaier G, Moghaddam A, Westhauser F. Insulin-Like Growth Factor-1 as a Possible Alternative to Bone Morphogenetic Protein-7 to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells in Vitro. Int J Mol Sci 2018; 19:ijms19061674. [PMID: 29874864 PMCID: PMC6032281 DOI: 10.3390/ijms19061674] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/28/2022] Open
Abstract
Growth factors and mesenchymal stem cells (MSC) support consolidation of bone defects. Bone Morphogenetic Protein-7 (BMP-7) has been used clinically and experimentally, but the outcomes remain controversial. Increased systemic expression of Insulin-like Growth Factor-1 (IGF-1) significantly correlates with successful regeneration of bone healing disorders, making IGF-1 a promising alternative to BMP-7. There is no experimental data comparing the osteoinductive potential of IGF-1 and BMP-7. Therefore, in this study, the influence of IGF-1 and BMP-7 in different concentrations on the osteogenic differentiation of two human MSC-subtypes, isolated from reaming debris (RMSC) and iliac crest bone marrow (BMSC) has been assessed. A more sensitive reaction of BMSC towards stimulation with IGF-1 in concentrations of 400–800 ng/mL was found, leading to a significantly higher degree of osteogenic differentiation compared to stimulation with BMP-7. RMSC react more sensitively to stimulation with BMP-7 compared to BMSC. Lower concentrations of IGF-1 were necessary to significantly increase osteogenic differentiation of RMSC and BMSC compared to BMP-7. Therefore, IGF-1 should be considered as a valuable option to improve osteogenic differentiation of MSC and merits further experimental consideration. The MSC subtype and method of differentiation factor application also have to be considered, as they affect the outcome of osteogenic differentiation.
Collapse
Affiliation(s)
- Bruno Reible
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Gerhard Schmidmaier
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Fabian Westhauser
- HTRG-Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
14
|
Rizwan M, Hamdi M, Basirun WJ. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res A 2017; 105:3197-3223. [DOI: 10.1002/jbm.a.36156] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
- M. Rizwan
- Department of Mechanical Engineering; Faculty of Engineering, University of Malaya; Kuala Lumpur 50603 Malaysia
- Department of Metallurgical Engineering; Faculty of Chemical and Process Engineering, NED University of Engineering and Technology; Karachi 75270 Pakistan
| | - M. Hamdi
- Center of Advanced Manufacturing and Material Processing, University of Malaya; Kuala Lumpur 50603 Malaysia
| | - W. J. Basirun
- Department of Chemistry; Faculty of Science, University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
15
|
Heath DE, Cooper SL. The development of polymeric biomaterials inspired by the extracellular matrix. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1051-1069. [DOI: 10.1080/09205063.2017.1297285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Australia
| | - Stuart L. Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Ishihara K, Okazaki K, Akiyama T, Akasaki Y, Nakashima Y. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017; 6:73-81. [PMID: 28148490 PMCID: PMC5331175 DOI: 10.1302/2046-3758.62.bjr-2016-0199.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022] Open
Abstract
Objectives Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Methods Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays. Results After six weeks, the area of mineralisation was significantly higher for the transplanted osteophytes than for the cancellous bone (43803 μm2, sd 14660 versus 9421 μm2, sd 5032, p = 0.0184, one-way analysis of variance). Compared with cancellous bone, the conditioned medium prepared using osteophytes contained a significantly higher amounts of transforming growth factor (TGF)-β1 (471 pg/ml versus 333 pg/ml, p = 0.0001, Wilcoxon rank sum test), bone morphogenetic protein (BMP)-2 (47.75 pg/ml versus 32 pg/ml, p = 0.0214, Wilcoxon rank sum test) and insulin-like growth factor (IGF)-1 (314.5 pg/ml versus 191 pg/ml, p = 0.0418, Wilcoxon rank sum test). The stronger effects of osteophytes towards osteoblasts in terms of a higher proliferation rate, upregulation of gene expression of differentiation markers such as alpha-1 type-1 collagen and alkaline phosphate, and higher migration, compared with cancellous bone, was confirmed. Conclusion We provide evidence of favourable features of osteophytes for bone mineralisation through a direct effect on osteoblasts. The acceleration in metabolic activity of the osteophyte provides justification for future studies evaluating the clinical use of osteophytes as autologous bone grafts. Cite this article: K. Ishihara, K. Okazaki, T. Akiyama, Y. Akasaki, Y. Nakashima. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017;6:73–81. DOI: 10.1302/2046-3758.62.BJR-2016-0199.R1.
Collapse
Affiliation(s)
- K Ishihara
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - K Okazaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | - Y Akasaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Y Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Maiti SK, Ninu AR, Sangeetha P, Mathew DD, Tamilmahan P, Kritaniya D, Kumar N, Hescheler J. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med 2016. [PMID: 28096633 PMCID: PMC5227108 DOI: 10.46582/jsrm.1202013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone marrow derived mesenchymal stem cells (BMSC) represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2) and insulin-like growth factor (IGF-1) to a silica-coated calcium hydroxyapatite (HASi) - rabbit bone marrow derived mesenchymal stem cell (rBMSC) construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm) in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B); HASi scaffold seeded with rBMSC (group C); HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells) and concentration of growth factors rhBMP-2 (50µg) and IGF-1 (50µg) was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A). Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT), haematoxylin and eosin (H & E) and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.
Collapse
Affiliation(s)
- Swapan Kumar Maiti
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Ajantha Ravindran Ninu
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Palakkara Sangeetha
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Dayamon D Mathew
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Paramasivam Tamilmahan
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Deepika Kritaniya
- Senior Research Fellow, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Naveen Kumar
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Jurgen Hescheler
- Director, Institute of Neurophysiology, Universität zu Köln, Robert-Koch-Strasse 39, D-50931, Köln, Germany
| |
Collapse
|
18
|
Bodelón OG, Clemente C, Alobera MA, Aguado-Henche S, Escudero ML, Alonso MCG. Osseointegration of TI6Al4V dental implants modified by thermal oxidation in osteoporotic rabbits. Int J Implant Dent 2016; 2:18. [PMID: 27747710 PMCID: PMC5005616 DOI: 10.1186/s40729-016-0051-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023] Open
Abstract
Background In this work, the effect of the heat treatment on Ti6Al4V implants and topical administration of growth hormone to address a better osseointegration in osteoporotic patients has been analysed. Methods The osseointegration process of Ti6Al4V implants modified by oxidation treatment at 700 °C for 1 h and the influence of local administration of growth hormone (GH) in osteoporotic female rabbits after 15 and 30 days of implantation have been studied. Bone response was analysed through densitometric and histomorphometric studies. Characterization of the surface was provided by scanning electron microscopy. Results The oxidation treatment promotes the formation of an oxide scale grown on the Ti6Al4V implants that alters the nanoroughness of the surface. Bone mineral density (BMD) increases from 0.347 ± 0.014 (commercial) to 0.383 ± 0.012 g cm−2 (modified), and bone-to-implant contact (BIC) goes from 48.01 ± 14.78 (commercial) to 55.37 ± 15.31 (modified) after 30 days of implantation. Conclusions The oxidation treatment on the Ti6Al4V dental implants enhances the early bone formation at the longest periods of implantation. No significant differences in the BMD and BIC results in healthy and osteoporotic rabbits were revealed with respect to the local administration of GH in the implantation site.
Collapse
Affiliation(s)
- Oscar G Bodelón
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Celia Clemente
- Department of Human Anatomy and Embryology, School of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Miguel Angel Alobera
- Stomatology Department IV, Complutense University of Madrid (UCM), Madrid, Spain
| | - Soledad Aguado-Henche
- Department of Human Anatomy and Embryology, School of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - María Lorenza Escudero
- Department of Surface Engineering, Corrosion and Durability, National Center for Metallurgical Research (CENIM), CSIC, Avda. Gregorio del Amo 8, 28040, Madrid, Spain
| | - María Cristina García Alonso
- Department of Surface Engineering, Corrosion and Durability, National Center for Metallurgical Research (CENIM), CSIC, Avda. Gregorio del Amo 8, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: A review. Maturitas 2016; 92:49-55. [PMID: 27621238 DOI: 10.1016/j.maturitas.2016.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
Older patients are commonly at a higher risk of experiencing a bone fracture. Complications during fracture healing, including delayed union and non-union, can arise as a result of a multitude of patient and treatment factors. This review describes those factors which contribute to a greater risk of delayed union and non-union with particular reference to the elderly population and discusses therapies that may enhance the fracture healing process in the hope of reducing the incidence of delayed union and non-union. Increasing age does seem to increase the risk of delayed union or non-union. In addition, smoking and the treatment of post-fracture pain with non-steroidal anti-inflammatory drugs (NSAIDs) put the patient at the greatest risk, while ultrasound therapy appears to be a non-invasive, effective treatment option to reduce the risk of delayed union or non-union. The use of growth factors and of stem cells and the role of surgery are also discussed.
Collapse
Affiliation(s)
- Bradley A Foulke
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK.
| | - Adrian R Kendal
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| | - David W Murray
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Hemant Pandit
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, Nuffield Orthopaedic Centre, Windmill Road, Oxford OX3 7LD, UK
| |
Collapse
|
20
|
Padmakumar S, Joseph J, Neppalli MH, Mathew SE, Nair SV, Shankarappa SA, Menon D. Electrospun Polymeric Core-sheath Yarns as Drug Eluting Surgical Sutures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6925-34. [PMID: 26936629 DOI: 10.1021/acsami.6b00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drug-coated sutures are widely used as delivery depots for antibiotics and anti-inflammatory drugs at surgical wound sites. Although drug-laden coating provides good localized drug concentration, variable loading efficiency and release kinetics limits its use. Alternatively, drug incorporation within suture matrices is hampered by the harsh fabrication conditions required for suture-strength enhancement. To circumvent these limitations, we fabricated mechanically robust electrospun core-sheath yarns as sutures, with a central poly-l-lactic acid core, and a drug-eluting poly-lactic-co-glycolic acid sheath. The electrospun sheath was incorporated with aceclofenac or insulin to demonstrate versatility of the suture in loading both chemical and biological class of drugs. Aceclofenac and insulin incorporated sutures exhibited 15% and 4% loading, and release for 10 and 7 days, respectively. Aceclofenac sutures demonstrated reduced epidermal hyperplasia and cellularity in skin-inflammation animal model, while insulin loaded sutures showed enhanced cellular migration in wound healing assay. In conclusion, we demonstrate an innovative strategy of producing mechanically strong, prolonged drug-release sutures loaded with different classes of drugs.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - John Joseph
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - Madhuri Harsha Neppalli
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - Sumi Elizabeth Mathew
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - Sahadev A Shankarappa
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham , Kochi 682041, Kerala, India
| |
Collapse
|
21
|
Ahire JJ, Robertson D, Neveling DP, van Reenen AJ, Dicks LMT. Hyaluronic acid-coated poly(d,l-lactide) (PDLLA) nanofibers prepared by electrospinning and coating. RSC Adv 2016. [DOI: 10.1039/c6ra01996j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Process of preparation of HA/PDLLA nanohybrids.
Collapse
Affiliation(s)
- J. J. Ahire
- Department of Microbiology
- University of Stellenbosch
- Stellenbosch
- South Africa
| | - D. Robertson
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Stellenbosch
- South Africa
| | - D. P. Neveling
- Department of Microbiology
- University of Stellenbosch
- Stellenbosch
- South Africa
| | - A. J. van Reenen
- Department of Chemistry and Polymer Science
- University of Stellenbosch
- Stellenbosch
- South Africa
| | - L. M. T. Dicks
- Department of Microbiology
- University of Stellenbosch
- Stellenbosch
- South Africa
| |
Collapse
|
22
|
Helbig L, Guehring T, Rosenberger S, Ivanova A, Kaeppler K, Fischer CA, Moghaddam A, Schmidmaier G. A new animal model for delayed osseous union secondary to osteitis. BMC Musculoskelet Disord 2015; 16:362. [PMID: 26585516 PMCID: PMC4653915 DOI: 10.1186/s12891-015-0816-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/12/2015] [Indexed: 12/03/2022] Open
Abstract
Background The treatment of infection-related delayed bone unions is still very challenging for the orthopedic surgeon. The prevalence of such infection-related types of osteitis is high in complex fractures, particularly in open fractures with extensive soft-tissue damage. The aim of this study was to develop a new animal model for delayed union due to osteitis. Methods After randomization to infected or non-infected groups 20 Sprague–Dawley rats underwent a transverse fracture of the midshaft tibia. After intramedullary inoculation with staphylococcus aureus (103 CFU) fracture stabilization was done by intramedullary titanium K-wires. After 5 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Micro-CT scans were additionally used to quantitatively evaluate the callus formation by the score of Lane and Sandhu. Blood samples were taken to analyze infectious disease markers (day 1, 14 and 35). Results Biomechanical testing showed a significant higher maximum torque in the non-infected group 5 weeks postoperatively compared with the infected group (p < 0.001). According to the Lane and Sandhu score a significantly higher callus formation was found in the non-infected group (p < 0.001). Similarly, the leucocyte count in the infected group was significantly higher than in the non-infected group (p < 0.05). Conclusions Here we have established a new animal model for delayed osseous union secondary to osteitis. The animal model appears to be appropriate for future experimental studies to test new therapeutic strategies in these difficult to treat bone healing complications.
Collapse
Affiliation(s)
- Lars Helbig
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Thorsten Guehring
- Klinik für Unfallchirurgie und Orthopädie, BG Unfallklinik Ludwigshafen, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany.
| | - Svenja Rosenberger
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Adriana Ivanova
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Kathrin Kaeppler
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Christian Alexander Fischer
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Arash Moghaddam
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Gerhard Schmidmaier
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
23
|
Haversath M, Hülsen T, Böge C, Tassemeier T, Landgraeber S, Herten M, Warwas S, Krauspe R, Jäger M. Osteogenic differentiation and proliferation of bone marrow-derived mesenchymal stromal cells on PDLLA + BMP-2-coated titanium alloy surfaces. J Biomed Mater Res A 2015; 104:145-54. [PMID: 26268470 DOI: 10.1002/jbm.a.35550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
RhBMP-2 is clinically applied to enhance bone healing and used in combination with titanium fixation implants. The purpose of this in vitro study was to compare the osteogenic differentiation and proliferation of hMSC on native polished versus sandblasted titanium surfaces (TS) and to test their behavior on pure poly-D,L-lactide (PDLLA) coated as well as PDLLA + rhBMP-2 coated TS. Furthermore, the release kinetics of PDLLA + rhBMP-2-coated TS was investigated. Human bone marrow cells were obtained from three different donors (A: male, 16 yrs; B: male, 27 yrs, C: male, 49 yrs) followed by density gradient centrifugation and flow cytometry with defined antigens. The cells were seeded on native polished and sandblasted TS, PDLLA-coated TS and PDLLA + rhBMP-2-coated TS. Osteogenic differentiation (ALP specific activity via ALP and BCA assay) and proliferation (LDH cytotoxicity assay) was examined on day 7 and 14 and release kinetics of rhBMP-2 was investigated on day 3, 7, 10, and 14. We found significant higher ALP specific activity and LDH activity on native polished compared to native sandblasted surfaces. PDLLA led to decreased ALP specific and LDH activity on both surface finishes. Additional rhBMP-2 slightly diminished this effect. RhBMP-2-release from coated TS decreased nearly exponentially with highest concentrations at the beginning of the cultivation period. The results of this in vitro study suggest that native TS stimulate hMSC significantly stronger toward osteogenic differentiation and proliferation than rhBMP-2 + PDLLA-layered TS in the first 14 days of cultivation. The PDLLA-layer seems to inhibit local hMSC differentiation and proliferation.
Collapse
Affiliation(s)
- Marcel Haversath
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Tobias Hülsen
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Carolin Böge
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Tjark Tassemeier
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Stefan Landgraeber
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Monika Herten
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Warwas
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Gao T, Zhang N, Wang Z, Wang Y, Liu Y, Ito Y, Zhang P. Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation. Macromol Biosci 2015; 15:1070-80. [PMID: 25950171 DOI: 10.1002/mabi.201500069] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Indexed: 11/08/2022]
Abstract
In this study, insulin-like growth factor 1 (IGF-1) was successfully immobilized on the poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) and pure PLGA microcarriers via polydopamine (pDA). The results demonstrated that the pDA layer facilitated simple and highly efficient immobilization of peptides on the microcarriers within 20 min. Mouse adipose-derived stem cells (ADSCs) attachment and proliferation on IGF-1-immobilized microcarriers were much higher than non-immobilized ones. More importantly, the IGF-1-immobilized PLGA/HA microcarriers significantly increased alkaline phosphatase (ALP) activity and expression of osteogenesis-related genes of ADSCs. Therefore, it is considered that the IGF-1-decorated PLGA/HA microcarriers will be of great value in the bone tissue engineering.
Collapse
Affiliation(s)
- Tianlin Gao
- School of Public Health, Jilin University, Changchun, 130021, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ning Zhang
- Department of Foot and Ankle Surgery, The Second Hospital of Shandong University, Jinan, 250000, P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ya Liu
- School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1-Hirosawa, Wako, Saitama, 351-0198, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Materials Science, 2-1-Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| |
Collapse
|
25
|
Yu X, Suárez-González D, Khalil AS, Murphy WL. How does the pathophysiological context influence delivery of bone growth factors? Adv Drug Deliv Rev 2015; 84:68-84. [PMID: 25453269 PMCID: PMC4401584 DOI: 10.1016/j.addr.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
"Orthobiologics" represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or "context", during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Darilis Suárez-González
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
26
|
Philippart A, Boccaccini AR, Fleck C, Schubert DW, Roether JA. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Rev Med Devices 2014; 12:93-111. [PMID: 25331196 DOI: 10.1586/17434440.2015.958075] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.
Collapse
|
27
|
Combined use of low-intensity pulsed ultrasound and rhBMP-2 to enhance bone formation in a rat model of critical size defect. J Orthop Trauma 2014; 28:605-11. [PMID: 24464096 PMCID: PMC4108582 DOI: 10.1097/bot.0000000000000067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bone repair is regulated by biological factors and the local mechanical environment. We hypothesize that the combined use of low-intensity pulsed ultrasound (LIPUS) and recombinant human bone morphogenetic protein-2 (rhBMP-2) will synergistically or additively enhance bone regeneration in a model simulating the more difficult scenarios in orthopaedic traumatology. METHODS Femoral defects in rats were replaced with absorbable collagen sponges carrying rhBMP-2 (0, 1.2, 6, or 12 μg; n = 30). Each group was divided equally to receive daily treatment of either LIPUS or sham stimulation. At 4 weeks, new bone formation was assessed using quantitative (radiography and microcomputed tomography), qualitative (histology), and functional (biomechanical) end points. RESULTS LIPUS with 1.2 μg of rhBMP-2 significantly improved the radiographic healing as compared with its sham control starting as early as 2 weeks. Quantitatively, the use of LIPUS with 6 μg of rhBMP-2 significantly increased the bone volume. However, using LIPUS with 12 μg of rhBMP-2 indicated a reduction in callus size, without compromising the bone volume, which was also observable histologically, showing organized lamellar bone and repopulated marrow in the original defect region. Histologically, 1.2 μg of rhBMP-2 alone showed the presence of uncalcified cartilage in the defect, which was reduced with LIPUS treatment. Biomechanically, LIPUS treatment significantly increased the peak torsion and stiffness in the 6- and 12 μg rhBMP-2 groups. CONCLUSIONS LIPUS enhances rhBMP-2-induced bone formation at lower doses (1.2 and 6 μg) and callus maturation at 12-μg dose delivered on absorbable collagen sponge for bone repair in a rat critical-sized femoral segmental defect.
Collapse
|
28
|
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014; 3:61-102. [PMID: 26798575 PMCID: PMC4709372 DOI: 10.1007/s40204-014-0026-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).
Collapse
Affiliation(s)
| | - Nattapon Chantarapanich
- Department of Mechanical Engineering, Faculty of Engineering at Si Racha, Kasetsart University, 199 Sukhumvit Road, Si Racha, Chonburi 20230 Thailand
| | - Kriskrai Sitthiseripratip
- National Metal and Materials Technology Center (MTEC), 114 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120 Thailand
| | - George A. Thouas
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Qizhi Chen
- Department of Materials Engineering, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
29
|
Wey A, Cunningham C, Hreha J, Breitbart E, Cottrell J, Ippolito J, Clark D, Lin HN, Benevenia J, O'Connor JP, Lin SS, Paglia DN. Local ZnCl2 accelerates fracture healing. J Orthop Res 2014; 32:834-41. [PMID: 24574139 DOI: 10.1002/jor.22593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 02/04/2023]
Abstract
This study evaluated the effect of local zinc chloride (ZnCl2 ), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, radiographic scoring, histomorphometry, qualitative histological scoring, PCNA immunohistochemistry, and local growth factor analysis were performed. Fractures treated with local ZnCl2 possessed significantly increased mechanical properties compared to controls at 4 weeks post fracture. The radiographic scoring analysis showed increased cortical bridging at 4 weeks in the 1.0 (p=0.0015) and 3.0 (p<0.0001) mg/kg ZnCl2 treated groups. Histomorphometry of the fracture callus at day 7 showed 177% increase (p=0.036) in percent cartilage and 133% increase (p=0.002) in percent mineralized tissue with local ZnCl2 treatment compared to controls. Qualitative histological scoring showed a 2.1× higher value at day 7 in the ZnCl2 treated group compared to control (p = 0.004). Cell proliferation and growth factors, VEGF and IGF-I, within fracture calluses treated with local ZnCl2 were increased at day 7. The results suggest local administration of ZnCl2 increases cell proliferation, causing increased growth factor production which yields improved chondrogenesis and endochondral ossification. Ultimately, these events lead to accelerated fracture healing as early as 4 weeks post fracture.
Collapse
Affiliation(s)
- Aaron Wey
- Rutgers New Jersey Medical School, Department of Orthopaedics, 90 Bergen Street, Suite 7300, Newark, New Jersey, 07103
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaur S, Harjai K, Chhibber S. Local delivery of linezolid from poly-D,L-lactide (PDLLA)-linezolid-coated orthopaedic implants to prevent MRSA mediated post-arthroplasty infections. Diagn Microbiol Infect Dis 2014; 79:387-92. [PMID: 24809862 DOI: 10.1016/j.diagmicrobio.2014.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/25/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
The present study focuses on the use of linezolid as local delivery agent for direct administration of the drug at the orthopaedic implant site. Local drug delivery system with linezolid added to the Poly D, L-(Lactide) polymer solution was used to coat the orthopaedic grade K-wires. Bacterial adherence on K-wires was then determined to evaluate the effect of the coated drug on the adherence of MRSA. A significant decrease in bacterial adherence as compared to naked wires was observed on all the coated K-wires (2.5, 5 and 10% w/w linezolid coated) with maximum decrease of 60%. This represents an aggressive early approach to prevent initial adherence of bacterial population. With the rise in MRSA mediated orthopaedic device related infections, the use of linezolid loaded polymer coated implants is definitely an attractive strategy against drug resistant strains of S. aureus.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
31
|
Choi GH, Lee HJ, Lee SC. Titanium-Adhesive Polymer Nanoparticles as a Surface-Releasing System of Dual Osteogenic Growth Factors. Macromol Biosci 2013; 14:496-507. [DOI: 10.1002/mabi.201300368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Gi Hyun Choi
- Department of Maxillofacial Biomedical Engineering; Institute of Oral Biology, School of Dentistry, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering; Institute of Oral Biology, School of Dentistry, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering; Institute of Oral Biology, School of Dentistry, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| |
Collapse
|
32
|
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: Necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2013; 102:2884-900. [DOI: 10.1002/jbm.a.34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Janin Reifenrath
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Nina Angrisani
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Mareike Lalk
- Small Animal Clinic; University of Veterinary Medicine Hannover; Bünteweg 9 30559 Hannover Germany
| | - Silke Besdo
- Institute of Continuum Mechanics; Leibniz Universität Hannover; Appelstr. 11 30167 Hannover Germany
| |
Collapse
|
33
|
Mentink A, Hulsman M, Groen N, Licht R, Dechering KJ, van der Stok J, Alves HA, Dhert WJ, van Someren EP, Reinders MJ, van Blitterswijk CA, de Boer J. Predicting the therapeutic efficacy of MSC in bone tissue engineering using the molecular marker CADM1. Biomaterials 2013; 34:4592-601. [DOI: 10.1016/j.biomaterials.2013.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/01/2013] [Indexed: 12/17/2022]
|
34
|
Doorn J, Roberts SJ, Hilderink J, Groen N, van Apeldoorn A, van Blitterswijk C, Schrooten J, de Boer J. Insulin-like growth factor-I enhances proliferation and differentiation of human mesenchymal stromal cells in vitro. Tissue Eng Part A 2013; 19:1817-28. [PMID: 23530894 DOI: 10.1089/ten.tea.2012.0522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) offer great potential for bone tissue engineering applications, but their in vivo performance remains limited. Preconditioning of these cells with small molecules to improve their differentiation before implantation, or incorporation of growth factors are possible solutions. Insulin-like growth factor-1 (IGF-1) is one of the most abundant growth factors in bone, involved in growth, development, and metabolism, but its effects on hMSCs are still subject of debate. Here we examined the effects of IGF-1 on proliferation and differentiation of hMSCs in vitro and we found that serum abolished the effects of IGF-1. Only in the absence of serum, IGF-1 increased proliferation, alkaline phosphatase expression, and osteogenic gene expression of hMSCs. Furthermore, we examined synergistic effects of bone morphogenetic protein-2 (BMP-2) and IGF-1 and, although IGF-1 enhanced BMP-2-induced mineralization, IGF-1 only slightly affected in vivo bone formation.
Collapse
Affiliation(s)
- Joyce Doorn
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Leal AI, Caridade SG, Ma J, Yu N, Gomes ME, Reis RL, Jansen JA, Walboomers XF, Mano JF. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dent Mater 2013; 29:427-36. [DOI: 10.1016/j.dental.2013.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
|
36
|
Chung BG, Kang L, Khademhosseini A. Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2013; 2:1653-68. [PMID: 23488907 DOI: 10.1517/17460441.2.12.1653] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Micro- and nanoscale technologies are emerging as powerful enabling tools for tissue engineering and drug discovery. In tissue engineering, micro- and nanotechnologies can be used to fabricate biomimetic scaffolds with increased complexity and vascularization. Furthermore, these technologies can be used to control the cellular microenvironment (i.e., cell-cell, cell-matrix and cell-soluble factor interactions) in a reproducible manner and with high temporal and spatial resolution. In drug discovery, miniaturized platforms based on micro- and nanotechnology can be used to precisely control the fluid flow, enable high-throughput screening, and minimize sample or reagent volumes. In addition, these systems enhance reproducibility and significantly reduce reaction times. This paper reviews the recent developments in the field of micro- and nanoscale technology and gives examples of their tissue engineering and drug discovery applications.
Collapse
Affiliation(s)
- Bong Geun Chung
- Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA +1 617 768 8395 ; +1 617 768 8477 ;
| | | | | |
Collapse
|
37
|
Bertrand J, Stange R, Hidding H, Echtermeyer F, Nalesso G, Godmann L, Timmen M, Bruckner P, Dell'Accio F, Raschke MJ, Pap T, Dreier R. Syndecan 4 supports bone fracture repair, but not fetal skeletal development, in mice. ACTA ACUST UNITED AC 2013; 65:743-52. [DOI: 10.1002/art.37817] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 11/27/2012] [Indexed: 11/10/2022]
|
38
|
Koerner JD, Yalamanchili P, Munoz W, Uko L, Chaudhary SB, Lin SS, Vives MJ. The effects of local insulin application to lumbar spinal fusions in a rat model. Spine J 2013; 13:22-31. [PMID: 23295034 DOI: 10.1016/j.spinee.2012.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/25/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The rates of pseudoarthrosis after a single-level spinal fusion have been reported up to 35%, and the agents that increase the rate of fusion have an important role in decreasing pseudoarthrosis after spinal fusion. Previous studies have analyzed the effects of local insulin application to an autograft in a rat segmental defect model. Defects treated with a time-released insulin implant had significantly more new bone formation and greater quality of bone compared with controls based on histology and histomorphometry. A time-released insulin implant may have similar effects when applied in a lumbar spinal fusion model. PURPOSE This study analyzes the effects of a local time-released insulin implant applied to the fusion bed in a rat posterolateral lumbar spinal fusion model. Our hypothesis was twofold: first, a time-released insulin implant applied to the autograft bed in a rat posterolateral lumbar fusion will increase the rate of successful fusion and second, will alter the local environment of the fusion site by increasing the levels of local growth factors. STUDY DESIGN Animal model (Institutional Animal Care and Use Committee approved) using 40 adult male Sprague-Dawley rats. METHODS Forty skeletally mature Sprague-Dawley rats weighing approximately 500 g each underwent posterolateral intertransverse lumbar fusions with iliac crest autograft from L4 to L5 using a Wiltse-type approach. After exposure of the transverse processes and high-speed burr decortication, a Linplant (Linshin Canada, Inc., ON, Canada) consisting of 95% microrecrystalized palmitic acid and 5% bovine insulin (experimental group) or a sham implant consisting of only palmitic acid (control group) was implanted on the fusion bed with iliac crest autograft. As per the manufacturer, the Linplant has a release rate of 2 U/day for a minimum of 40 days. The transverse processes and autograft beds of 10 animals from the experimental and 10 from the control group were harvested at Day 4 and analyzed for growth factors. The remaining 20 spines were harvested at 8 weeks and underwent a radiographic examination, manual palpation, and microcomputed tomographic (micro-CT) examination. RESULTS One of the 8-week control animals died on postoperative Day 1, likely due to anesthesia. In the groups sacrificed at Day 4, there was a significant increase in insulinlike growth factor-I (IGF-I) in the insulin treatment group compared with the controls (0.185 vs. 0.129; p=.001). No significant differences were demonstrated in the levels of transforming growth factor beta-1, platelet-derived growth factor-AB, and vascular endothelial growth factor between the groups (p=.461, .452, and .767 respectively). Based on the radiographs, 1 of 9 controls had a solid bilateral fusion mass, 2 of 9 had unilateral fusion mass, 3 of 9 had small fusion mass bilaterally, and 3 of 9 had graft resorption. The treatment group had solid bilateral fusion mass in 6 of 10 and unilateral fusion mass in 4 of 10, whereas a small bilateral fusion mass and graft resorption were not observed. The difference between the groups was significant (p=.0067). Based on manual palpation, only 1 of 9 controls was considered fused, 4 of 9 were partially fused, and 4 of 9 were not fused. In the treatment group, there were 6 of 10 fusions, 3 of 10 partial fusions, and 1 of 10 were not fused. The difference between the groups was significant (p=.0084). Based on the micro-CT, the mean bone volume of the control group was 126.7 mm(3) and 203.8 mm(3) in the insulin treatment group. The difference between the groups was significant (p=.0007). CONCLUSIONS This study demonstrates the potential role of a time-released insulin implant as a bone graft enhancer using a rat posterolateral intertransverse lumbar fusion model. The insulin-treatment group had significantly higher fusion rates based on the radiographs and manual palpation and had significantly higher levels of IGF-I and significantly more bone volume on micro-CT.
Collapse
Affiliation(s)
- John D Koerner
- Department of Orthopaedics, UMDNJ-New Jersey Medical School, 90 Bergen St, DOC 7300, Newark, NJ 07101, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Fuchs TF, Surke C, Stange R, Quandte S, Wildemann B, Raschke MJ, Schmidmaier G. Local delivery of growth factors using coated suture material. ScientificWorldJournal 2012; 2012:109216. [PMID: 22666088 PMCID: PMC3362025 DOI: 10.1100/2012/109216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/08/2012] [Indexed: 11/17/2022] Open
Abstract
The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide) suspension (PDLLA) and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I). The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.
Collapse
Affiliation(s)
- T F Fuchs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Waldeyerstrasse, 48149 Muenster, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Back DA, Pauly S, Rommel L, Haas NP, Schmidmaier G, Wildemann B, Greiner SH. Effect of local zoledronate on implant osseointegration in a rat model. BMC Musculoskelet Disord 2012; 13:42. [PMID: 22439827 PMCID: PMC3323428 DOI: 10.1186/1471-2474-13-42] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/22/2012] [Indexed: 12/04/2022] Open
Abstract
Background An implant coating with poly(D, L-lactide) (PDLLA) releasing incorporated Zoledronic acid (ZOL) has already proven to positively effect osteoblasts, to inhibit osteoclasts and to accelerate fracture healing. Aim of this study was to investigate the release kinetics of the chosen coating and the effect of different concentrations of ZOL locally released from this coating on the osseointegration of implants. Methods For release kinetics the release of C14-labled ZOL out of the coating was monitored over a period of six weeks in vitro. For testing the osseointegration, titanium Kirschner wires were implanted into the medullary canal of right femurs of 100 Sprague Dawley rats. The animals were divided into five groups receiving implants either uncoated or coated with PDLLA, PDLLA/ZOL low (1.2% w/w) or PDLLA/ZOL high (2% w/w). Additionally, a group with uncoated implants received ZOL intravenously (i.v.). After 56 days animals were sacrificed, femurs dissected and either strength of fixation or histological bone/implant contacts and newly formed bone around the implants were determined. Results Release kinetics revealed an initial peak in the release of C14-ZOL with a slight further progression over the following weeks. There was no significant enhancement of osseointegration for both groups who received ZOL-coated implants or ZOL i.v. compared to the controls in biomechanical or histological analyses, except for a significant raise in strength of fixation of ZOL i.v. versus PDLLA. Conclusions Even though the investigated local ZOL application did not enhance the osseointegration of the implant, the findings might support its application in fracture treatment, since fracture stabilization devices are often explanted after consolidation.
Collapse
Affiliation(s)
- David A Back
- Department of Orthopedics and Traumatology, German Armed Forces Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Stem cell research plays an important role in orthopedic regenerative medicine today. Current literature provides us with promising results from animal research in the fields of bone, tendon, and cartilage repair. While early clinical results are already published for bone and cartilage repair, the data about tendon repair is limited to animal studies. The success of these techniques remains inconsistent in all three mentioned areas. This may be due to different application techniques varying from simple mesenchymal stem cell injection up to complex tissue engineering. However, the ideal carrier for the stem cells still remains controversial. This paper aims to provide a better understanding of current basic research and clinical data concerning stem cell research in bone, tendon, and cartilage repair. Furthermore, a focus is set on different stem cell application techniques in tendon reconstruction, cartilage repair, and filling of bone defects.
Collapse
|
42
|
Mehdikhani-Nahrkhalaji M, Fathi MH, Mortazavi V, Mousavi SB, Hashemi-Beni B, Razavi SM. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:485-495. [PMID: 22127403 DOI: 10.1007/s10856-011-4507-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.
Collapse
|
43
|
Bordei P. Locally applied platelet-derived growth factor accelerates fracture healing. ACTA ACUST UNITED AC 2011; 93:1653-9. [DOI: 10.1302/0301-620x.93b12.27244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelet-derived growth factor (PDGF) is known to stimulate osteoblast or osteoprogenitor cell activity. We investigated the effect of locally applied PDGF from poly-d,l-lactide (PDLLA)-coated implants on fracture healing in a rat model. A closed fracture of the right tibia of four-month-old Sprague-Dawley rats (n = 40) was stabilised with implants coated with a biodegradable PDLLA versus implants coated with PDLLA and PDGF. Radiographs were taken throughout the study, and a marker of DNA activity, bromodeoxyuridine (BrdU), was injected before the rats were killed at three, seven and ten days. The radiographs showed consolidation of the callus in the PDGF-treated group compared with the control group at all three time points. In the PDGF-treated group, immunohistochemical staining of BrdU showed that the distribution of proliferating cells in all cellular events was higher after ten days compared with that at three and seven days. These results indicate that local application of PDGF from biodegradable PDLLA-coated implants significantly accelerates fracture healing in experimental animals. Further development may help fracture healing in the clinical situation.
Collapse
Affiliation(s)
- P. Bordei
- Ovidius University of Constanta, Department
of Anatomy, Faculty of Medicine, 1 University
str., B, 900527 Constanta, Romania
| |
Collapse
|
44
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Govindan R, Narasimhan S. Cissus quadrangularis augments IGF system components in human osteoblast like SaOS-2 cells. Growth Horm IGF Res 2011; 21:343-348. [PMID: 22015109 DOI: 10.1016/j.ghir.2011.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 07/21/2011] [Accepted: 09/14/2011] [Indexed: 11/16/2022]
Abstract
Osteoporosis is a public health problem which is associated with significant morbidity and mortality. Growth factors are produced locally in the bone and control cellular events such as induction of bone growth. Signaling through the Insulin-like growth factor (IGF)-I receptor (IGF-IR) by locally synthesized IGF - I or IGF-II in osteoblast is considered crucial for normal development and for bone remodeling. Traditional use of Cissus quadrangularis (C. quadrangularis) in the treatment of bone disorders have been documented, however its regulatory effects on IGF system components remain largely unknown. The present study is employed to delineate the effects of ethanolic extract of C. quadrangularis on the regulation of IGF system components in human osteoblast like SaOS-2 cells. RT-PCR analysis revealed an increase in the mRNA expression of IGF-I, IGF-II, IGF-IR in cells treated with C. quadrangularis when compared with control cells. The mRNA expression of IGF binding protein-3 (IGFBP-3) did not differ significantly between control and C. quadrangularis treated cells. Immunoradiometric analysis revealed increased levels of IGF-I, IGF-II and IGFBP-3 in the conditioned medium of C. quadrangularis treated cultures when compared with control. Western blotting analysis revealed increase in protein levels of IGF-IR in cells treated with C. quadrangularis. These results indicate positive regulation of C. quadrangularis on the IGF system components of human osteoblast like SaOS-2 cells.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | | | | | | | | |
Collapse
|
45
|
Vordemvenne T, Paletta JRJ, Hartensuer R, Pap T, Raschke MJ, Ochman S. Cooperative effects in differentiation and proliferation between PDGF-BB and matrix derived synthetic peptides in human osteoblasts. BMC Musculoskelet Disord 2011; 12:263. [PMID: 22104124 PMCID: PMC3231994 DOI: 10.1186/1471-2474-12-263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background Enhancing osteogenic capabilities of bone matrix for the treatment of fractures and segmental defects using growth factors is an active area of research. Recently, synthetic peptides like AC- 100, TP508 or p-15 corresponding to biologically active sequences of matrix proteins have been proven to stimulate bone formation. The platelet-derived growth factor (PDGF) BB has been identified as an important paracrine factor in early bone healing. We hypothesized that the combined use of PDGF-BB with synthetic peptides could result in an increase in proliferation and calcification of osteoblast-like cells. Methods Osteoblast-like cell cultures were treated with PDGF and synthetic peptides, singly and as combinations, and compared to non-treated control cell cultures. The cultures were evaluated at days 2, 5, and 10 in terms of cell proliferation, calcification and gene expression of alkaline phosphate, collagen I and osteocalcin. Results Experimental findings revealed that the addition of PDGF, p-15 and TP508 and combinations of PDGF/AC-100, PDGF/p-15 and PDGF/TP508 resulted in an increase in proliferating osteoblasts, especially in the first 5 days of cultivation. Proliferation did not significantly differ between single factors and factor combinations (p > 0.05). The onset of calcification in osteoblasts occurred earlier and was more distinct compared to the corresponding control or PDGF stimulation alone. Significant difference was found for the combined use of PDGF/p-15 and PDGF/AC-100 (p < 0.05). Conclusions Our findings indicate that PDGF exhibits cooperative effects with synthetic peptides in differentiation and proliferation. These cooperative effects cause a significant early calcification of osteoblast-like cells (p < 0.05). We suggest the combination of synthetic peptides and PDGF as a potential clinical approach for accelerating bone healing or coating osteosynthesis materials.
Collapse
Affiliation(s)
- Thomas Vordemvenne
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Madurantakam PA, Rodriguez IA, Beckman MJ, Simpson DG, Bowlin GL. Evaluation of biological activity of bone morphogenetic proteins on exposure to commonly used electrospinning solvents. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511424012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone tissue engineering is one of the emerging strategies for developing functionally viable bone substitutes. The recent trend in bone tissue engineering is to combine the benefits of a three-dimensional nanofibrous scaffold with biologically active molecules and responsive stem cells. Electrospinning is the most versatile of the scaffold fabrication strategies and may involve the use of an organic solvent at one stage or another. In spite of all distinct advantages of electrospinning, valid concerns about potentially denaturing interactions between the organic solvent and the biomolecules exist. Efforts are ongoing to incorporate osteoinductive molecules, such as bone morphogenetic proteins (BMPs), during the electrospinning process. The challenge lies in ensuring that the biological activity of these incorporated molecules survives the process. This study was specifically designed to investigate the effects of exposure to commonly used organic solvents on heterodimeric BMP-2/7 using slot-blot assay quantified by infrared imaging and on embryonic myoblasts stably transfected with BMP-specific response element linked to a luciferase reporter – C2C12BRA. Overall, the biological activity of these molecules significantly decreased when exposed to organic solvents but can be restored to their original values by increasing the polarity of the solvent. It was found that an aqueous buffer can effectively overcome the deleterious effects of organic solvents on BMPs, thus generating osteoinductive bone scaffolds.
Collapse
Affiliation(s)
- Parthasarathy A Madurantakam
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Isaac A Rodriguez
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew J Beckman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - David G Simpson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary L Bowlin
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 2011; 42 Suppl 2:S77-81. [PMID: 21724186 DOI: 10.1016/j.injury.2011.06.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reconstruction of large bone defects or non-unions resulting from biochemical disorders, tumour resections or complicated fractures is still a challenge for orthopaedic and trauma surgery. On the one hand, autografts harbour most features of ideal bone graft substitutes but on the other hand, they have a lot insurmountable disadvantages. An ideal bone graft substitute should be biomechanically stable, able to degrade within an appropriate time frame, exhibit osteoconductive, osteogenic and osteoinductive properties and provide a favourable environment for invading blood vessels and bone forming cells. Whilst osteoconductivity of biomaterials for bone tissue engineering strategies can be directed by their composition, surface character and internal structure, osteoinductive and osteogenic features can be provided by growth factors originally participating in fracture healing and/or multipotent mesenchymal stromal/stem cells (MSC) capable of rebuilding bone and marrow structures. In this review, aspects of the clinical application of the most commonly used growth factors for bone repair, the bone morphogenetic proteins (BMPs), and the potential use of human MSC for clinical application will be discussed.
Collapse
Affiliation(s)
- Patricia Janicki
- Research Center for Experimental Orthopedics, Department of Orthopedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
48
|
Kadow-Romacker A, Greiner S, Schmidmaier G, Wildemann B. Effect of β-tricalcium phosphate coated with zoledronic acid on human osteoblasts and human osteoclasts in vitro. J Biomater Appl 2011; 27:577-85. [DOI: 10.1177/0885328211415722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The combination of a bone graft material with bisphosphonates (BPs) might be advantageous for an optimal balance of material resorption and stimulation of bone formation. This study investigated the effect of β-tricalcium phosphate (β-TCP) bone grafts coated with zoledronic acid (ZOL) on osteoblast-like cells and osteoclast-like cells (OLC). As a drug carrier, the polymer poly(D,L-lactide) was used and three different concentrations of ZOL were tested. β-TCP coated with ZOL stimulated the production of osteocalcin (OC), osteoprotegerin, and sRANKL in osteoblast-like cells. The polymer coating alone caused a significant increase in collagen type 1 and OC production. OLC viability was inhibited and the tartrate-resistant acidic phosphatase isoform-5b was significantly decreased after cultivation on polymer-coated β-TCP for 12 days. The three different concentrations of ZOL decreased cell viability and no TRAPiso-5b was detectable, indicating a strong reduction of the TRAPiso-5b after 12 days in culture. After 21 days in culture, only the higher ZOL concentrations significantly reduced cell viability and TRAPiso-5b. The results of this study show that coating of β-TCP with ZOL has stimulating effects on osteoblast-like cells. Additionally, an inhibition of osteoclasts was seen. The combination of this bone grafting material with BPs might, therefore, be effective in the treatment of large bone defects.
Collapse
Affiliation(s)
- A Kadow-Romacker
- Berlin–Brandenburg Center for Regenerative Therapies, Julius Wolff Institut, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - S Greiner
- Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - G Schmidmaier
- Department for Orthopedic and Trauma Surgery, University Clinic of Heidelberg, Heidelberg, Germany
| | - B Wildemann
- Berlin–Brandenburg Center for Regenerative Therapies, Julius Wolff Institut, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Wildemann B, Lange K, Strobel C, Fassbender M, Willie B, Schmidmaier G. Local BMP-2 application can rescue the delayed osteotomy healing in a rat model. Injury 2011; 42:746-52. [PMID: 21134674 DOI: 10.1016/j.injury.2010.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/10/2010] [Accepted: 11/10/2010] [Indexed: 02/02/2023]
Abstract
Delayed healing is still a severe complication in the clinic. The aim of the present study was to investigate the effect of locally delivered BMP-2 incorporated in a poly(d,l-lactide) (PDLLA) implant coating in a rat model with delayed tibial healing. The healing delay in this model is not caused by mechanical instability or additional tissue manipulation and presents therefore a common and challenging clinical situation of impaired healing. Radiological, histological and biomechanical evaluations were performed at days 5, 10, 28, 42, and 84 after tibial osteotomy. The control group showed a delayed healing without complete bridging and without reaching the biomechanical stability of the contralateral tibiae after 84 days. The mechanical stability of the BMP-treated tibiae showed a significant increase at days 28 and 42 compared to the control group and exceeded the stability of the intact contralateral tibiae. Less cartilage was detected at day 28 and the mineralisation was significantly enhanced at day 42 due to the local BMP application. Looking at the early healing phase (day 10) a reduced vascularisation was seen in the BMP group. This reflects the situation seen during normal healing, whereas the delayed healing in the present model had an increased vascularisation. The present study clearly demonstrates that local BMP-2 application can stimulate delayed healing in a clinically relevant animal model.
Collapse
Affiliation(s)
- B Wildemann
- Julius Wolff Institut, Center for Musculoskeletal Surgery, Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Rath SN, Arkudas A, Lam CX, Olkowski R, Polykandroitis E, Chróscicka A, Beier JP, Horch RE, Hutmacher DW, Kneser U. Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. J Biomater Appl 2011; 27:277-89. [PMID: 21680609 DOI: 10.1177/0885328211402243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyaluronic acid (HA) and fibrin glue (FG) are effective hydrogels for tissue engineering applications as they support tissue in-growth, retain growth factors, and release them slowly with time. The scaffolds, in combination with a hydrogel, effectuate a successful graft. However, the survival of a graft entirely depends upon a functional vascular supply. Therefore, hydrogels must support the in-growing vasculature. To study and compare the vascular patterns, HA and FG hydrogel-containing PLDLLA-TCP-PCL scaffolds were implanted in the groin of male Lewis rats and supplied with a micro-surgically prepared arterio-venous (A-V) loop. The rats were perfused with a vascular contrast media after 4 and 8 weeks and sacrificed for further analysis. The specimens were scanned with micro-CT to find the vascular growth patterns. Corrosion casting of blood vessels followed by SEM demonstrated a high vascular density near the parent blood vessels. Histologically, HA and FG implanted animal groups showed significant angiogenetic activity, especially within the pores of the scaffold. However, formation of new blood vessels was more conspicuously observed at 4 weeks in FG than HA implants. Furthermore, by 8 weeks, the number and pattern of blood vessels were comparable between them. At this time, HA was still present indicating its slow degradation. The finding was confirmed by histomorphometric analysis. This experimental study demonstrates that HA containing composite scaffold systems permit stabile in-growth of blood vessels due to sustained degradation over 8 weeks. HA is a potential matrix for a tissue engineered composite graft.
Collapse
Affiliation(s)
- Subha N Rath
- Division of Bioengineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|