1
|
He J, Pan Z, Zhou G, Yu J, Li D. Integrated analysis of clinical indicators and mechanical properties in cancellous bone. Med Eng Phys 2024; 133:104245. [PMID: 39557501 DOI: 10.1016/j.medengphy.2024.104245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Cancellous bone plays a critical role as a shock absorber in the human skeletal system. Accurate assessment of its microstructure and mechanical properties is crucial for osteoporosis diagnosis and treatment. However, various methods with different indicators are adopted currently in the clinical and laboratory assessments which lead to confusion and inconvenience for cancellous bone analysis. In the current work, correlations among clinical indicators including CT-derived Hounsfield Unit (HU) & bone mineral density (BMD), laboratory indicators (mass density & volume fraction), and mechanical properties (modulus & strength) are explored. The results show that different indicators can be linearly linked through the HU value which can be adopted as a good microstructure indicator of cancellous bone. Additionally, the impacts of cancellous bone specimen preparation on clinical CT imaging and mechanical properties are also investigated. The results indicate common marrow-removal treatment can lead to decrease in mean HU value, deviation in HU value distribution, while it will increase the modulus and strength. The current work provides a valuable insight into the cancellous properties based on comprehensive analysis on the clinical and laboratory assessments which is critical for accurate diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Jiapeng He
- School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Pan
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guowei Zhou
- School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiangming Yu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dayong Li
- School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Schröder G, Mittlmeier T, Gahr P, Ulusoy S, Hiepe L, Schulze M, Götz A, Andresen R, Schober HC. Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture. Diagnostics (Basel) 2024; 14:498. [PMID: 38472970 DOI: 10.3390/diagnostics14050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Trabeculae in vertebral bodies are unequally distributed within the cervical spine (CS), the thoracic spine (TS), and lumbar spine (LS). Such structures are also unequally distributed within the individual vertebrae. Exact knowledge of the microstructure of these entities could impact our understanding and treatment of fractures caused by osteoporosis and possibly improve surgical approaches. Appropriate investigations could help clarify the pathomechanisms of different forms of osteoporotic vertebral fractures, as well as different changes in morphological findings like the trabecular bone score (TBS). In the present study, we applied punctures to the craniocaudal and ventrocaudal directions and obtained cylinders of cancellous bone from the central portions and marginal regions of cervical vertebrae 5 and 6, thoracic vertebrae 8 and 12, and lumbar vertebrae 1 and 3. We systematically analyzed these samples to determine the bone volume fraction, trabecular thickness, separation, connectivity density, degree of anisotropy, and structure model index. METHODS Using an 8-gauge Jamshidi needle, we obtained samples from three quadrants (Q I: right margin; Q II: central; Q III: left margin) in the frontal and transverse plane and prepared these samples with a moist cloth in a 1.5 mL Eppendorf reaction vessel. The investigations were performed on a micro-CT device (SKYSCAN 1172, RJL Micro & Analytic Company, Karlsdorf-Neuthard, Germany). All collected data were analyzed using the statistical software package SPSS (version 24.0, IBM Corp., Armonk, NY, USA). Student's t test, the Wilcoxon-Mann-Whitney test, the Chi-squared test, and univariate analysis were used for between-group comparisons. The selection of the test depended on the number of investigated groups and the result of the Shapiro-Wilk test of normal distribution. In the case of statistically significant results, a post hoc LSD test was performed. RESULTS In total, we obtained 360 bone samples from 20 body donors. The craniocaudal puncture yielded data of similar magnitudes for all investigated parameters in all three quadrants, with the highest values observed in the CS. Comparisons of the ventrodorsal and craniocaudal microstructure revealed a significantly lower trabecular density and a significantly higher degree of anisotropy in the craniocaudal direction. CONCLUSIONS The results presented different distributions and behaviors of trabecular density, with lower density in the mid-vertebral region over the entire breadth of the vertebrae. Reduced trabecular density caused a higher degree of anisotropy and was, therefore, associated with a lower capacity to sustain biomechanical loads. Fractures in fish vertebrae were easily explained by this phenomenon. The different changes in these structures could be responsible, in part, for the changes in the TBS determined using dual-energy X-ray absorptiometry. These results confirm the clinical relevance of the TBS.
Collapse
Affiliation(s)
- Guido Schröder
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Patrick Gahr
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Sahra Ulusoy
- Faculty of Medicine, University of Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Laura Hiepe
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Marko Schulze
- Institute of Anatomy and Cell Biology, University of Bielefeld, Morgenbreede 1, 33615 Bielefeld, Germany
| | - Andreas Götz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock-Warnemuende, Germany
| | - Reimer Andresen
- Institute for Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck und Hamburg, Esmarchstraße 50, 25746 Heide, Germany
| | - Hans-Christof Schober
- OrthoCoast, Practice for Orthopedics and Osteology, Hufelandstraße 1, 17438 Wolgast, Germany
| |
Collapse
|
3
|
Shin DE, Lee Y, An HJ, Hwang TS, Cho JW, Oh J, Ahn W, Lee J, Hong CG, Lee Y, Lee S. Trabecular structural difference between the superior and inferior regions of the vertebral body: a cadaveric and clinical study. Front Endocrinol (Lausanne) 2023; 14:1238654. [PMID: 37795375 PMCID: PMC10546412 DOI: 10.3389/fendo.2023.1238654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Background Osteoporotic vertebral compression fractures commonly involve the superior vertebral body; however, their associated causes have not yet been clearly established. This study aimed to determine the trabecular structural differences between the superior and inferior regions of the vertebral body using cadaveric and clinical studies. Materials and methods First, five vertebrae were collected from three human cadavers. The trabecular structures of the superior and inferior regions of each vertebral body were analyzed using micro-computed tomography (micro-CT), finite element analysis (FEA), and biomechanical test. Based on the results of the ex vivo study, we conducted a clinical study. Second, spine CT images were retrospectively collected. Bone volume and Hounsfield unit were analyzed for 192 vertebral bodies. Finally, after sample size calculation based on the pilot study, prospectively, 200 participants underwent dual-energy X-ray absorptiometry (DXA) of the lateral spine. The bone mineral densities (BMDs) of the superior and inferior regions of each lumbar vertebral body were measured. The paired t-test and Wilcoxon signed-rank test were used for the statistical analyses, and p-value < 0.05 was considered significant. Results Cadaver studies revealed differences between the superior and inferior trabecular bone structures. The bone volume ratio, BMD, and various other trabecular parameters advocated for decreased strength of the superior region. Throughout the biomechanical study, the limitations of the compression force were 3.44 and 4.63 N/m2 for the superior and inferior regions, respectively. In the FEA study, the inferior region had a lower average displacement and higher von Mises stress than the superior region. In the clinical spine CT-based bone volume and BMD study, the bone volume was significantly higher in the inferior region than in the superior region. In the lateral spine DXA, the mean BMD of the superior region of vertebral bodies was significantly lower compared with that of the inferior region. Conclusion The superior trabecular structure of the lumbar vertebral bodies possesses more biomechanical susceptibility compared with the inferior trabecular structure, confirming its dominant role in causing osteoporotic vertebral fractures. Physicians should also focus on the BMD values of the superior region of the vertebral body using lateral spine DXA to evaluate osteoporosis.
Collapse
Affiliation(s)
- Dong Eun Shin
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Younghun Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
- SL Bio, Inc., Gyeonggi-do, Republic of Korea
| | - Tae-Sun Hwang
- Department of Anatomy, School of Medicine, CHA University, Gyeonggi-do, Republic of Korea
| | - Jin-Woo Cho
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Jongbeom Oh
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Wooyeol Ahn
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Chul Gie Hong
- Department of Orthopedic Surgery, Kangwon National University Hospital, Gangwon-do, Republic of Korea
| | - Yeonju Lee
- CHA Graduate School of Medicine, Pochon, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea
- SL Bio, Inc., Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Schröder G, Baginski AM, Schulze M, Hiepe L, Bugaichuk S, Martin H, Andresen JR, Moritz M, Andresen R, Schober HC. Regional variations in the intra- and intervertebral trabecular microarchitecture of the osteoporotic axial skeleton. Anat Sci Int 2023:10.1007/s12565-023-00726-6. [PMID: 37093524 DOI: 10.1007/s12565-023-00726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Trabecular structures in vertebral bodies are unequally distributed in the cervical, thoracic and lumbar spine, and also within individual vertebrae. Knowledge of the microstructure of these entities could influence our comprehension and treatment of osteoporotic fractures, and even surgical procedures. Appropriate investigations may clarify the pathomechanisms of various osteoporotic fractures (fish, wedge-shaped, and flat vertebrae). We obtained three cancellous bone cylinders from the centers and margins of cervical vertebra 3 to lumbar vertebra 5, and investigated these in regard of bone volume fraction, trabecular thickness, separation, trabecular number, trabecular bone pattern factor, connectivity density, and degree of anisotropy. Using a Jamshidi needle®, we obtained samples from three quadrants (QI: right-sided edge, QII: central, QIII: left-sided edge) of 242 prepared vertebrae, and investigated these on a micro-CT device. In all, 726 bone samples were taken from eleven body donors. Bone volume fraction, trabecular thickness, and the degree of anisotropy were significantly lower in QII than in QI and QIII. Trabecular pattern factor, however, was significantly higher in QII than in QI and QIII. The results helped to explain fish vertebrae. Wedge fractures and flat vertebrae are most likely caused by the complex destruction of trabecular and cortical structures. The higher bone volume fraction in the cervical spine compared to the thoracic and lumbar spine accounts for the small number of fractures in the cervical spine. The marked trabecular pattern factor in the center of thoracic and lumbar vertebrae could be a reason for the surgeon to use different screw designs for individual vertebrae.
Collapse
Affiliation(s)
- Guido Schröder
- Warnow Clinic, Clinic for Orthopedics and Trauma Surgery, Am Forsthof 3, 18246, Buetzow, Germany.
| | | | - Marko Schulze
- Institute for Anatomy and Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Laura Hiepe
- Institute for Anatomy, University Medical Center Rostock, Rostock, Germany
| | | | - Heiner Martin
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemuende, Germany
| | - Julian Ramin Andresen
- Clinic for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mario Moritz
- Clinic of Internal Medicine IV, Suedstadt Clinic Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| | - Reimer Andresen
- Institute for Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck und Hamburg, Heide, Germany
| | - Hans-Christof Schober
- Clinic of Internal Medicine IV, Suedstadt Clinic Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Baleani M, Fraterrigo G, Erani P, Rota G, Berni M, Taddei F, Schileo E. Applying a homogeneous pressure distribution to the upper vertebral endplate: Validation of a new loading system, pilot application to human vertebral bodies, and finite element predictions of DIC measured displacements and strains. J Mech Behav Biomed Mater 2023; 140:105706. [PMID: 36841124 DOI: 10.1016/j.jmbbm.2023.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Image-based personalized Finite Element Models (pFEM) could detect alterations in physiological deformation of human vertebral bodies, but their accuracy has been seldom reported. Meaningful validation experiments should allow vertebral endplate deformability and ensure well-controlled boundary conditions. This study aimed to (i) validate a new loading system to apply a homogeneous pressure on the vertebral endplate during vertebral body compression regardless of endplate deformation; (ii) perform a pilot study on human vertebral bodies measuring surface displacements and strains with Digital Image Correlation (DIC); (iii) determine the accuracy of pFEM of the vertebral bodies. Homogeneous pressure application was achieved by pressurizing a fluid silicone encased in a rubber silicone film acting on the cranial endplate. The loading system was validated by comparing DIC-measured longitudinal strains and lower-end contact pressures, measured on three homogeneous pseudovertebrae of constant transversal section at 2.0 kN, against theoretically calculated values. Longitudinal strains and contact pressures were rather homogeneous, and their mean values close to theoretical calculations (5% underestimation). DIC measurements of surface longitudinal and circumferential displacements and strains were obtained on three human vertebral bodies at 2.0 kN. Complete displacement and strain maps were achieved for anterolateral aspects with random errors ≤0.2 μm and ≤30 μstrain, respectively. Venous plexus and double curvatures limited the completeness and accuracy of DIC data in posterior aspects. pFEM of vertebral bodies, including cortical bone mapping, were built from computed tomography images. In anterolateral aspects, pFEM accuracy of the three vertebrae was: (i) comparable to literature in terms of longitudinal displacements (R2>0.8); (ii) extended to circumferential displacements (pooled data: R2>0.9) and longitudinal strains (zero median error, 95% error: <27%). Circumferential strains were overestimated (median error: 39%). The new methods presented may permit to study how physiological and pathologic conditions influence the ability of vertebral endplates/bodies to sustain loads.
Collapse
Affiliation(s)
- Massimiliano Baleani
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, Bologna, Italy.
| | - Giulia Fraterrigo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Bioingegneria Computazionale, Bologna, Italy
| | - Paolo Erani
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, Bologna, Italy
| | - Giulia Rota
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, Bologna, Italy
| | - Matteo Berni
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, Bologna, Italy
| | - Fulvia Taddei
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Bioingegneria Computazionale, Bologna, Italy
| | - Enrico Schileo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Bioingegneria Computazionale, Bologna, Italy.
| |
Collapse
|
6
|
Vertebral trabecular bone texture analysis in opportunistic MRI and CT scan can distinguish patients with and without osteoporotic vertebral fracture: A preliminary study. Eur J Radiol 2023; 158:110642. [PMID: 36527774 DOI: 10.1016/j.ejrad.2022.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the potential of texture parameters from opportunistic MRI and CT for the detection of patients with vertebral fragility fracture, to design a decision tree and to compute a Random Forest analysis for the prediction of fracture risk. METHODS One hundred and eighty vertebrae of sixty patients with at least one (30) or without (30) a fragility fracture were retrospectively assessed. Patients had a DXA, an MRI and a CT scan from the three first lumbar vertebrae. Vertebrae texture analysis was performed in routine abdominal or lumbar CT and lumbar MRI using 1st and 2nd order texture parameters. Hounsfield Unit Bone density (HU BD) was also measured on CT-scan images. RESULTS Twelve texture parameters, Z-score and HU BD were significantly different between the two groups whereas T score and BMD were not. The inter observer reproducibility was good to excellent. Decision tree showed that age and HU BD were the most relevant factors to predict the fracture risk with a 93 % sensitivity and 56 % specificity. AUC was 0.91 in MRI and 0.92 in CT-scan using the Random Forest analysis. The corresponding sensitivity and specificity were 72 % and 93 % in MRI and 83 and 89 % in CT. CONCLUSIONS This study is the first to compare texture indices computed from opportunistic CT and MR images. Age and HU-BD together with selected texture parameters could be used to assess risk fracture. Machine learning algorithm can detect fracture risk in opportunistic CT and MR imaging and might be of high interest for the diagnosis of osteoporosis.
Collapse
|
7
|
Roessinger O, Hügle T, Walker UA, Geurts J. Polg mtDNA mutator mice reveal limited involvement of vertebral bone loss in premature aging-related thoracolumbar hyperkyphosis. Bone Rep 2022; 17:101618. [PMID: 36120646 PMCID: PMC9479024 DOI: 10.1016/j.bonr.2022.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Age-related hyperkyphosis is multifactorial and involves alterations of vertebral bone, intervertebral discs (IVD) and paraspinal muscles. The relative contribution of these tissues remains unclear. Here, we compared differences in vertebral bone microarchitecture and IVD thickness between prematurely aging mice with spinal hyperkyphosis and wild type littermates. Methods Thoracolumbar vertebral columns were dissected from homozygous Polg D257A and age-matched wild type littermates. Micro-computed tomography was performed to quantify cortical and trabecular bone parameters at anterior and posterior portions of T8-L4 vertebrae. In addition, vertebral shape, transaxial facet joint orientation and IVD thickness were quantified. Differences in anterior/posterior ratios between genotypes were compared by Student's t-test and association between vertebral bone and IVD parameters was investigated using Pearson correlation analysis. Results Hyperkyphotic homozygous mice displayed generalized osteopenia that was more pronounced at the posterior compared with anterior portion of thoracolumbar vertebrae. An increase in the anterior/posterior ratio of trabecular bone parameters was revealed at the thoracolumbar junction (T13-L1). Polg D257A displayed diffuse loss of cortical bone thickness, yet anterior/posterior ratios were unchanged. Despite generalized and regional bone loss, vertebral shape was unaffected. PolG D257A mice showed a 10-20 % reduction of IVD thickness at both thoracic and lumbar levels, with only minimal histopathological changes. IVD thickness was negatively correlated with anterior/posterior ratios of trabecular bone parameters, as well as with more coronally oriented facet joints, but negatively correlated with the anterior/posterior ratio of cortical bone thickness. Conclusions Aging-induced regional changes of vertebral trabecular and cortical bone did not lead to altered vertebral shape in Polg D257A mice but may indirectly cause hyperkyphosis through reduction of IVD thickness. These findings suggest a limited role for aging-induced bone loss in spinal hyperkyphosis and warrants further research on the involvement of paraspinal muscle degeneration.
Collapse
Affiliation(s)
- Olivier Roessinger
- Department of Rheumatology, Lausanne University Hospital, Avenue Pierre Decker 4, 1005 Lausanne, Switzerland
| | - Thomas Hügle
- Department of Rheumatology, Lausanne University Hospital, Avenue Pierre Decker 4, 1005 Lausanne, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Jeroen Geurts
- Department of Rheumatology, Lausanne University Hospital, Avenue Pierre Decker 4, 1005 Lausanne, Switzerland
| |
Collapse
|
8
|
Schröder G, Hiepe L, Moritz M, Vivell LM, Schulze M, Martin H, Götz A, Andresen JR, Kullen CM, Andresen R, Schober HC. Why Insufficiency Fractures are Rarely Found in the Cervical Spine, Even with Osteoporosis. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2022; 160:657-669. [PMID: 34937100 DOI: 10.1055/a-1647-3914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The human bone structure changes with an increase in age. Both material and structural properties affect bone strength. Despite the ageing of society, however, hardly any data are available on these parameters for elderly individuals. Therefore, in the present study, cancellous bone cylinders were taken from the center of each vertebral body (C3 to L5) and examined with regard to bone volume fraction, trabecular thickness, separation, number of trabeculae, cross-linking, connectivity density and degree of anisotropy. MATERIAL AND METHODS Samples were obtained from 440 body donors using a Jamshidi needle and analysed using microcomputed tomography. Existing deformities, fractures and bone mineral density of each vertebra were recorded by quantitative computed tomography. RESULTS With regard to the microcomputed tomography parameters, statistically significant differences were found between the different sections of the vertebrae: the trabeculae of the cervical vertebrae were significantly thicker and more closely spaced than in the thoracic and lumbar vertebrae. The bone volume fraction was significantly higher in this spinal segment, as was the connection density and the number of trabeculae and cross-links. In addition, the degree of anisotropy was significantly lower in the cervical vertebrae than in the other spinal segments. With regard to quantitative computed tomography, there was a significantly higher bone mineral density in the cervical vertebrae. CONCLUSION Even with osteoporosis, cervical vertebrae fracture significantly later than thoracic and lumbar vertebrae due to their unique microarchitecture and higher density. Thus, the cervical vertebrae has specific properties.
Collapse
Affiliation(s)
- Guido Schröder
- Klinik für Orthopädie und Unfallchirurgie, Warnow Klinik, Bützow, Deutschland
| | - Laura Hiepe
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Mario Moritz
- Klinik für Innere Medizin, Warnow Klinik, Bützow, Germany
| | | | - Marko Schulze
- Institut für Anatomie und Zellbiologie, Universität Bielefeld, Bielefeld, Deutschland
| | - Heiner Martin
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Andreas Götz
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
| | | | - Claus-Maximilian Kullen
- Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
| | - Reimer Andresen
- Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
| | - Hans-Christof Schober
- Klinik für Innere Medizin IV, Klinikum Südstadt Rostock, Akademisches Lehrkrankenhaus der Universität Rostock, Rostock, Deutschland
| |
Collapse
|
9
|
Schröder G, Reichel M, Spiegel S, Schulze M, Götz A, Bugaichuk S, Andresen JR, Kullen CM, Andresen R, Schober HC. Breaking strength and bone microarchitecture in osteoporosis: a biomechanical approximation based on load tests in 104 human vertebrae from the cervical, thoracic, and lumbar spines of 13 body donors. J Orthop Surg Res 2022; 17:228. [PMID: 35410435 PMCID: PMC8996654 DOI: 10.1186/s13018-022-03105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of the study was to investigate associations between biomechanical resilience (failure load, failure strength) and the microarchitecture of cancellous bone in the vertebrae of human cadavers with low bone density with or without vertebral fractures (VFx). Methods Spines were removed from 13 body donors (approval no. A 2017-0072) and analyzed in regard to bone mineral density (BMD), Hounsfield units (HU), and fracture count (Fx) with the aid of high-resolution CT images. This was followed by the puncture of cancellous bone in the vertebral bodies of C2 to L5 using a Jamshidi™ needle. The following parameters were determined on the micro-CT images: bone volume fraction (BVF), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), degree of anisotropy (DA), trabecular number (Tb.N), trabecular pattern factor (Tb.Pf), and connectivity density (Conn.D). The axial load behavior of 104 vertebral specimens (C5, C6, T7, T8, T9, T12, L1, L3) was investigated with a servohydraulic testing machine. Results Individuals with more than 2 fractures had a significantly lower trabecular pattern factor (Tb.Pf), which also proved to be an important factor for a reduced failure load in the regression analysis with differences between the parts of the spine. The failure load (FL) and endplate sizes of normal vertebrae increased with progression in the craniocaudal direction, while the HU was reduced. Failure strength (FS) was significantly greater in the cervical spine than in the thoracic or lumbar spine (p < 0.001), independent of sex. BVF, Tb.Th, Tb.N, and Conn.D were significantly higher in the cervical spine than in the other spinal segments. In contrast, Tb.Sp and Tb.Pf were lowest in the cervical spine. BVF was correlated with FL (r = 0.600, p = 0.030) and FS (r = 0.763, p = 0.002). Microarchitectural changes were also detectable in the cervical spine at lower densities. Conclusions Due to the unique microarchitecture of the cervical vertebrae, fractures occur much later in this region than they do in the thoracic or lumbar spine. Trial registration Approval no. A 2017-0072.
Collapse
|
10
|
Ma C, Zou D, Qi H, Li C, Zhang C, Yang K, Zhu F, Li W, Lu WW. A novel surgical planning system using an AI model to optimize planning of pedicle screw trajectories with highest bone mineral density and strongest pull-out force. Neurosurg Focus 2022; 52:E10. [DOI: 10.3171/2022.1.focus21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
The purpose of this study was to evaluate the ability of a novel artificial intelligence (AI) model in identifying optimized transpedicular screw trajectories with higher bone mineral density (BMD) as well as higher pull-out force (POF) in osteoporotic patients.
METHODS
An innovative pedicle screw trajectory planning system called Bone’s Trajectory was developed using a 3D graphic search and an AI-based finite element analysis model. The preoperative CT scans of 21 elderly osteoporotic patients were analyzed retrospectively. The AI model automatically calculated the number of alternative transpedicular trajectories, the trajectory BMD, and the estimated POF of L3–5. The highest BMD and highest POF of optimized trajectories were recorded and compared with AO standard trajectories.
RESULTS
The average patient age and average BMD of the vertebral bodies were 69.6 ± 7.8 years and 55.9 ± 17.1 mg/ml, respectively. On both sides of L3–5, the optimized trajectories showed significantly higher BMD and POF than the AO standard trajectories (p < 0.05). On average, the POF of optimized trajectory screws showed at least a 2.0-fold increase compared with AO trajectory screws.
CONCLUSIONS
The novel AI model performs well in enabling the selection of optimized transpedicular trajectories with higher BMD and POF than the AO standard trajectories.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Da Zou
- Orthopaedic Department and
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing
| | - Huan Qi
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chentian Li
- Department of Orthopaedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou; and
| | - Cheng Zhang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kedi Yang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Feng Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Orthopaedics, The University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Weishi Li
- Orthopaedic Department and
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing
| | - William W. Lu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Orthopaedics, The University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
11
|
Reeves JM, Vanasse T, Roche C, Athwal GS, Johnson JA, Faber KJ, Langohr GDG. Regional apparent density correlations within the proximal humerus. JSES Int 2021; 5:525-531. [PMID: 34136865 PMCID: PMC8178593 DOI: 10.1016/j.jseint.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Bone quality influences humeral implant selection for shoulder arthroplasty. However, little is known about how well bone near the humeral resection represents more distal cancellous bone. This investigation aimed to quantify the correlations between the apparent density of sites near the humeral head resection plane and cancellous sites throughout the metaphysis. Methods Using computed tomography data from 98 subjects, apparent bone density was quantified in 65 regions throughout the proximal humerus. Pearson's correlation coefficient was determined comparing the density between samples from the humeral resection and all supporting regions beneath the resection. Mean correlation coefficients were compared for (i) each sample region with all support regions, (ii) pooling all sample regions within a slice, and (iii) considering sample regions correlated with only the support regions in the same anatomic section. Results Stronger correlations existed for bone sampled beneath the resection (0.33 ± 0.10≤ r ≤ 0.88 ± 0.10), instead of from the resected humeral head (0.22 ± 0.10≤ r ≤ 0.66 ± 0.14). None of sample region correlated strongly with all support regions; however, strong correlations existed when sample and support regions both came from the same anatomic section. Discussion Assessments of cancellous bone quality in the proximal humerus should be made beneath the humeral resection not in the resected humeral head; and each anatomic quadrant should be assessed independently.
Collapse
Affiliation(s)
- Jacob M. Reeves
- University of Western Ontario, London, ON, Canada
- Corresponding author: Jacob M. Reeves, PhD, Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Health Care, 268 Grosvenor St, London, ON N6A 4L6, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu S, Todo M, Umebayashi D, Yamamoto Y. Risk assessment of vertebral compressive fracture using bone mass index and strength predicted by computed tomography image based finite element analysis. Clin Biomech (Bristol, Avon) 2021; 85:105365. [PMID: 33964689 DOI: 10.1016/j.clinbiomech.2021.105365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A main purpose of osteoporosis diagnosis is to evaluate the bone fracture risk. Some bone mass indices evaluated using bone mineral density has been utilized clinically to assess the degree of osteoporosis. On the other hand, Computed tomography image based finite element analysis has been developed to evaluate bone strength of vertebral bodies. The strength of a vertebra is defined as the load at the onset of compressive fracture. The objective of this study was therefore to propose a new feasible method to combine the advantages of the two osteoporotic indices such as the bone mass index and the bone strength. METHODS Three-dimensional finite element models of 246 vertebral bodies from 88 patients were constructed using the computed tomography images. Finite element analysis was then conducted to evaluate their strength values. The Pearson's correlation analysis was also conducted between the vertebral strength and bone mass indices. FINDINGS It was found that relatively weak positive correlations existed between the strength and the bone mass indices. A new assessment method was then proposed by combining the strength and the bone mass index. "high risk zone" corresponding to low strength with normal bone mass was found from the assessment method. INTERPRETATION Singe bone mass index cannot predict the fracture risk with high standard. The results of fracture risk assessment conducted by the new method clearly indicated the necessity and effectiveness to take both the strength and the bone mass index into account.
Collapse
Affiliation(s)
- Shun Wu
- Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsugu Todo
- Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan; Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan.
| | - Daisuke Umebayashi
- Department of Neurosurgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yu Yamamoto
- Inazawa Municipal Hospital, Department of Neurosurgery, Inazawa, Aichi 492-8510, Japan
| |
Collapse
|
13
|
Schröder G, Jabke B, Schulze M, Wree A, Martin H, Sahmel O, Doerell A, Kullen CM, Andresen R, Schober HC. A comparison, using X-ray micro-computed tomography, of the architecture of cancellous bone from the cervical, thoracic and lumbar spine using 240 vertebral bodies from 10 body donors. Anat Cell Biol 2021; 54:25-34. [PMID: 33583827 PMCID: PMC8017461 DOI: 10.5115/acb.20.269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Abstract
The vertebral trabecular bone has a complex three-dimensional microstructure with an inhomogeneous morphology. Correct identification and assessment of the weakest segments of the cancellous bone may lead to better prediction of fracture risk. The aim of this study was to compare cancellous bone from 240 vertebrae of the cervical, thoracic and lumbar spine of ten body donors with osteoporosis in regard to bone volume fraction (BVF), trabecular thickness, separation, trabecular number and degree of anisotropy, to ascertain why cervical vertebrae rarely fracture, even with severe osteoporosis. Samples were obtained from all vertebrae with a Jamshidi needle (8 Gauge). The investigations were performed with a micro-computed tomography (micro-CT) device (SKYSCAN 1172, RJL Micro & Analytic GmbH, Karlsdorf-Neuthard, Germany). Existing vertebral fractures and the bone mineral density of the lumbar spine were assessed with quantitative CT. Regarding the micro-CT parameters, statistically significant differences were observed between the various sections of the spine. We found a higher BVF, trabecular number and trabecular thickness, as well as a lower trabecular separation of the cervical vertebrae compared to other vertebrae. In addition, the degree of anisotropy in the cervical spine is lower than in the other spinal column sections. These results are age and sex dependent. Thus, the cervical spine has special structural features, whose causes must be determined in further investigations.
Collapse
Affiliation(s)
- Guido Schröder
- Clinic for Surgery, Department of Orthopedics and Trauma Surgery, Buetzow, Germany
| | - Benjamin Jabke
- Department of Internal Medicine, University Medical School Rostock, Rostock, Germany
| | - Marko Schulze
- Institute of Anatomy, University Medical School Rostock, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, University Medical School Rostock, Rostock, Germany
| | - Heiner Martin
- Institute for Biomedical Engineering, University of Rostock, Rostock-Warnemuende, Germany
| | - Olga Sahmel
- Institute for Biomedical Engineering, University of Rostock, Rostock-Warnemuende, Germany
| | | | - Claus Maximilian Kullen
- Institute of Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck and Hamburg, Heide, Germany
| | - Reimer Andresen
- Institute of Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck and Hamburg, Heide, Germany
| | - Hans-Christof Schober
- Department of Internal Medicine IV, Municipal Hospital Suedstadt Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Auger JD, Frings N, Wu Y, Marty AG, Morgan EF. Trabecular Architecture and Mechanical Heterogeneity Effects on Vertebral Body Strength. Curr Osteoporos Rep 2020; 18:716-726. [PMID: 33215364 PMCID: PMC7891914 DOI: 10.1007/s11914-020-00640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW We aimed to synthesize the recent work on the intra-vertebral heterogeneity in density, trabecular architecture and mechanical properties, its implications for fracture risk, its association with degeneration of the intervertebral discs, and its implications for implant design. RECENT FINDINGS As compared to the peripheral regions of the centrum, the central region of the vertebral body exhibits lower density and more sparse microstructure. As compared to the anterior region, the posterior region shows higher density. These variations are more pronounced in vertebrae from older persons and in those adjacent to degenerated discs. Mixed results have been reported in regard to variation along the superior-inferior axis and to relationships between the heterogeneity in density and vertebral strength and fracture risk. These discrepancies highlight that, first, despite the large amount of study of the intra-vertebral heterogeneity in microstructure, direct study of that in mechanical properties has lagged, and second, more measurements of vertebral loading are needed to understand how the heterogeneity affects distributions of stress and strain in the vertebra. These future areas of study are relevant not only to the question of spine fractures but also to the design and selection of implants for spine fusion and disc replacement. The intra-vertebral heterogeneity in microstructure and mechanical properties may be a product of mechanical adaptation as well as a key determinant of the ability of the vertebral body to withstand a given type of loading.
Collapse
Affiliation(s)
- Joshua D Auger
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Neilesh Frings
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Yuanqiao Wu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Andre Gutierrez Marty
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Local and global microarchitecture is associated with different features of bone biomechanics. Bone Rep 2020; 13:100716. [PMID: 32995387 PMCID: PMC7516068 DOI: 10.1016/j.bonr.2020.100716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose Beside areal bone mineral density (aBMD), evaluation of fragility fracture risk mostly relies on global microarchitecture. However, microarchitecture is not a uniform network. Therefore, this study aimed to compare local structural weakness to global microarchitecture on whole vertebral bodies and to evaluate how local and global microarchitecture was associated with bone biomechanics. Methods From 21 human L3 vertebrae, aBMD was measured using absorptiometry. Parameters of global microarchitecture were measured using HR-pQCT: trabecular bone volume fraction (Tb.BV/TVglobal), trabecular number, structure model index and connectivity density (Conn.D). Local minimal values of aBMD and Tb.BV/TV were identified in the total (Tt) or trabecular (Tb) area of each vertebral body. “Two dimensional (2D) local structural weakness” was defined as Tt.BMDmin, Tt.BV/TVmin and Tb.BV/TVmin. Mechanical testing was performed in 3 phases: 1/ initial compression until mild vertebral fracture, 2/ unloaded relaxation, and 3/ second compression until failure. Results Initial and post-fracture mechanics were significantly correlated with bone mass, global and local microarchitecture. Tt.BMDmin, Tt.BV/TVmin, Tb.BV/TVmin, and initial and post-fracture mechanics remained significantly correlated after adjustment for aBMD or Tb.BV/TVglobal (p < 0.001 to 0.038). The combination of the most relevant parameter of bone mass, global and local microarchitecture associated with failure load and stiffness demonstrated that global microarchitecture explained initial and post-fracture stiffness, while local structural weakness explained initial and post-fracture failure load (p < 0.001). Conclusion Local and global microarchitecture was associated with different features of vertebral bone biomechanics, with global microarchitecture controlling stiffness and 2D local structural weakness controlling strength. Therefore, determining both localized low density and impaired global microarchitecture could have major impact on vertebral fracture risk prediction. Global and local microarchitecture were associated with different features of bone biomechanics. Localized low density and/or impaired microarchitecture regions could have major impact on bone mechanical behavior. Global microarchitecture determined initial and post-fracture vertebral stiffness. Local microarchitecture determined initial and post-fracture vertebral failure load.
Collapse
|
16
|
Marage L, Gambarota G, Lasbleiz J, Lederlin M, Saint-Jalmes H. Confounding factors in multi-parametric q-MRI protocol: A study of bone marrow biomarkers at 1.5 T. Magn Reson Imaging 2020; 74:96-104. [PMID: 32858181 DOI: 10.1016/j.mri.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
OBJECT The MRI tissue characterization of vertebral bone marrow includes the measurement of proton density fat fraction (PDFF), T1 and T2* relaxation times of the water and fat components (T1W, T1F, T2*W, T2*F), IVIM diffusion D, perfusion fraction f and pseudo-diffusion coefficient D*. However, the measurement of these vertebral bone marrow biomarkers (VBMBs) is affected with several confounding factors. In the current study, we investigated these confounding factors including the regional variation taking the example of variation between the anterior and posterior area in lumbar vertebrae, B1 inhomogeneity and the effect of fat suppression on f. MATERIALS AND METHODS A fat suppressed diffusion-weighted sequence and two 3D gradient multi-echo sequences were used for the measurements of the seven VBMBs. A turbo flash B1 map sequence was used to estimate B1 inhomogeneities and thus, to correct flip angle for T1 quantification. We introduced a correction to perfusion fraction f measured with fat suppression, namely fPDFF. RESULTS A significant difference in the values of PDFF, f and fPDFF, T1F, T2*W and D was observed between the anterior and posterior region. Although, little variations of flip angle were observed in this anterior-posterior direction in one vertebra but larger variations were observed in head-feet direction from L1 to L5 vertebrae. DISCUSSION The regional difference in PDFF, fPDFF and T2*W can be ascribed to differences in the trabecular bone density and vascular network within vertebrae. The regional variation of VBMBs shows that care should be taken in reproducing the same region-of-interest location along a longitudinal study. The same attention should be taken while measuring f in fatty environment, and measuring T1. Furthermore, the MRI-protocol presented here allows for measurements of seven VBMBs in less than 6 min and is of interest for longitudinal studies of bone marrow diseases.
Collapse
Affiliation(s)
- Louis Marage
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000 Rennes, France.
| | - Giulio Gambarota
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - Jeremy Lasbleiz
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - Mathieu Lederlin
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - Hervé Saint-Jalmes
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| |
Collapse
|
17
|
Peng WM, Liu YF, Jiang XF, Dong XT, Jun J, Baur DA, Xu JJ, Pan H, Xu X. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J Zhejiang Univ Sci B 2020; 20:647-659. [PMID: 31273962 DOI: 10.1631/jzus.b1800622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of "reducing dimensions and designing layer by layer" was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%, (480±28) to (685±31) μm, and (263±28) to (265±28) μm, respectively. The compression results show that the Young's modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young's modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
Collapse
Affiliation(s)
- Wen-Ming Peng
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Yun-Feng Liu
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Xian-Feng Jiang
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Xing-Tao Dong
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310023, China
| | - Janice Jun
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dale A Baur
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jia-Jie Xu
- Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hui Pan
- Oral and Maxillofacial Surgery, Stomatology Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xu Xu
- Department of Stomatology, People's Hospital of Quzhou, Quzhou 324000, China
| |
Collapse
|
18
|
Disc degeneration promotes regional inhomogeneity in the trabecular morphology of loaded rat tail vertebrae. J Orthop Translat 2018; 15:104-111. [PMID: 30564552 PMCID: PMC6286468 DOI: 10.1016/j.jot.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background There is a close relationship between the vertebral trabecular morphology and the condition of the associated disc. Objective The relationship between disc degeneration and vertebral trabecular inhomogeneity is unclear. This study aimed to analyse the regional changes of vertebral trabecular morphology after disc degeneration. Methods Thirty male Sprague–Dawley rats were randomly assigned to five groups. Group 1 served as an experimental group for the assessment of disc degeneration induced by needle puncture. Group 2 served as a sham group for trabecular morphology analysis. In Group 3, rats had their tail bent between the eighth and tenth coccygeal vertebrae. In Group 4, the tail of rats was bent with a compression load of 4.5 N. In Group 5, rats first underwent disc degeneration induced by a needle puncture before their tail was bent with a compressive load of 4.5 N. Magnetic resonance imaging was performed on all groups, and histological examination was performed on rodents from Group 1. The ninth coccygeal vertebrae of rats from Groups 2–5 were scanned by Micro-computed tomography. Trabecular morphologic changes were assessed in the concave and convex regions by bone volume fraction, trabecular number, trabecular thickness and trabecular separation. Results Vertebral trabecular morphology in the concave region improved significantly, whereas the convex region was of significantly lower trabecular morphologic parameters with disc degeneration. The difference in trabecular morphologic parameters between the convex and concave regions increased significantly after disc degeneration. Conclusion Disc degeneration promotes regional inhomogeneity in the vertebral trabecular morphology, with the convex region of the vertebrae having the worse trabecular bone morphology than the concave region. The translational potential of this article Our study indicates that disc degeneration promotes regional inhomogeneity in the vertebral trabecular morphology. Regional variations in trabecular microarchitecture are helpful to predict vertebral fragility. This may help to elucidate the mechanisms by which disc degeneration contributes to vertebral fracture.
Collapse
|
19
|
Fletcher SMP, O’Reilly MA. Analysis of Multifrequency and Phase Keying Strategies for Focusing Ultrasound to the Human Vertebral Canal. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2322-2331. [PMID: 30273151 PMCID: PMC6309482 DOI: 10.1109/tuffc.2018.2872171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Focused ultrasound has been shown to increase the permeability of the blood-brain barrier and its feasibility for opening the blood-spinal cord barrier has also been demonstrated in small animal models, with great potential to impact the treatment of spinal cord (SC) disorders. For clinical translation, challenges to transvertebral focusing of ultrasound energy on the human spinal canal, such as a focal depth of field and standing-wave formation, must be addressed. A dual-aperture approach using multifrequency and phase-shift keying (PSK) strategies for achieving a controlled focus in human thoracic vertebrae was investigated through numerical simulations and benchtop experiments in ex vivo human vertebrae. An ~85% reduction in the focal depth of field was achieved compared to a single-aperture approach at 564 kHz. Short-burst (two-cycle) excitations in combination with PSK were found to suppress the formation of standing waves in ex vivo human thoracic vertebrae when focusing through the vertebral laminae. The results make an important contribution toward the development of a clinical-scale approach for targeting ultrasound therapy to the SC.
Collapse
Affiliation(s)
- Stecia-Marie P. Fletcher
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto,
ON, Canada and the Department of Medical Biophysics, University of Toronto,
ON, Canada ()
| | - Meaghan A. O’Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto,
ON, Canada and the Department of Medical Biophysics, University of Toronto,
ON, Canada ()
| |
Collapse
|
20
|
A Novel Method for the Prediction of the Pedicle Screw Stability: Regional Bone Mineral Density Around the Screw. Clin Spine Surg 2018; 31:E473-E480. [PMID: 30102636 DOI: 10.1097/bsd.0000000000000703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
STUDY DESIGN Prospective feasibility study on consecutive patients. OBJECTIVE The aim of this study was to investigate the ability of regional BMD around the pedicle screw to predict the screw fixation. SUMMARY OF BACKGROUND DATA Pedicle screw fixation is the gold standard technique for spinal fusion. Despite the advantage of biomechanical stability, screw loosening is a common complication. In previous studies, pullout strength and screw insertional torque were correlated, and most importantly, affected by bone mineral density (BMD). Although the density and structure of the vertebral body are not homogeneous, no study has yet evaluated the relationship between screw insertional torque and regional BMD around the pedicle screw in vivo. METHODS Consecutive 50 patients, scheduled for transpedicular fixation, were evaluated preoperatively for BMD measured by dual-energy absorptiometry (DXA) and quantitative computed tomography (QCT). Regional volumetric BMD around the pedicle screw (PS-vBMD) using the novel QCT technique was also evaluated. Among all patients, 190 screws (diameter, 7.5 to 8.5 mm; length, 40 to 45 mm, inserted from L1 to L5) were eligible for this study and were analyzed to identify factors contributing to insertional torque. The following factors were investigated: age, body mass index, laboratory data, pedicle diameter, screw diameter, screw length, and 5 types of bone mineral density measures [DXA: spine-areal BMD (aBMD), total hip-aBMD, femoral neck-aBMD, QCT: central-vBMD, PS-vBMD]. RESULTS Insertional torque was significantly correlated with each BMD measurement and strongest with PS-vBMD (r=0.61, P<0.001). Multiple regression analysis showed PS-vBMD was most strongly correlated with screw insertional torque (stdβ=0.494; P<0.001). A model containing the following 5 predictors was significantly associated with screw insertional torque: age, pedicle diameter, screw diameter, screw length, and PS-vBMD. CONCLUSIONS The preoperative measurement of PS-vBMD was technically feasible and reliably predictive of screw insertional torque during transpedicular fixation in a clinical setting.
Collapse
|
21
|
Clinical outcomes of posterior thoracic cage interbody fusion (PTCIF) to treat trauma and degenerative disease of the thoracic and thoracolumbar junctional spine. J Clin Neurosci 2018; 60:117-123. [PMID: 30352761 DOI: 10.1016/j.jocn.2018.10.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/07/2018] [Indexed: 11/21/2022]
Abstract
Laminectomy followed by posterolateral fusion (PLF) is a standard procedure for thoracic and thoracolumbar (TL) compressive lesions. However, it is challenging to apply sufficient bone chips as the spinal cord is exposed after the laminectomy. Therefore, we performed posterior thoracic cage interbody fusion (PTCIF) as an alternative technique. A total of 25 patients operated with PTCIF technique between 2012 and 2017 were analyzed in our study. These patients required a posterior decompression and fusion in thoracic and TL spine for traumatic injury or degenerative disease. To evaluate the outcome of bone fusion, computed tomography (CT) was performed at least 3-4 months after PTCIF. The surgery was performed through insertion of screws and cages packed with autologous bone chips in a similar fashion to the posterior lumbar interbody fusion technique. Among 25 patients who underwent PTCIF, 22 patients were involved in our study. The mean age and follow-up interval were 58.6 (28-78) years and 27.1 (6-60) months, respectively. Traumatic spinal injury was diagnosed in 6 patients and degenerative disease in 16 patients. One level PTCIF was performed in 12 patients and 2 levels in 8 patients. After the operation, patients with degenerative disease showed neurological improvement, and trauma cases showed no neurological aggravation. Successful bone fusion was confirmed on CT for all patients. PTCIF is an effective treatment thereby we suggest this approach to be considered as an alternative procedure to decompression and fusion surgery in the thoracic and TL spine.
Collapse
|
22
|
Abstract
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals' quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Ginu U Unnikrisnan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Amira I Hussein
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
23
|
Longitudinal assessment of marrow fat content using three-point Dixon technique in osteoporotic rabbits. Menopause 2018; 23:1339-1344. [PMID: 27529463 DOI: 10.1097/gme.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In this longitudinal pilot study, we aimed to investigate the intra-, interobserver, and scan-rescan reproducibility of marrow fat fraction (FF) measurements using three-point Dixon imaging in osteoporotic rabbits: comparison with histopathology. METHODS Twenty female rabbits were randomly assigned to sham-operation and ovariectomy in combination with daily methylprednisolone hemisuccinate groups (n = 10 per group). Marrow FF by three-point Dixon technique and bone density by dual-energy x-ray absorptiometry were assessed at baseline, 6 and 12 weeks after operation. Intra-, inter-reader, and scan-rescan reliability of FF measurements were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman 95% limit of agreement. Histomorphometry was performed to quantify marrow adipocyte parameters. RESULTS Intra- and inter-reader reproducibility of FF measurements was "substantial" (ICC = 0.984 and 0.978, respectively). Although the ICC for scan-rescan reliability was excellent (ICC = 0.962), increased measurement variability was observed using Bland-Altman plot. Relative to the sham-operated rabbits, the adipocytes mean diameter, density, and percent adipocytes area in the osteoporotic rabbits increased by 23.4%, 68.9%, and 117.0%, respectively. Marrow FF was positively correlated with the quantitative parameters of adipocytes, particularly with percent adipocyte area, but inversely associated with bone density. At the relatively early stage, the percentage of bone loss was similar to that of elevated fatty marrow in the osteoporotic rabbits; at the later stage, the change for the latter outweighed that of the former. CONCLUSIONS Results of three-point Dixon technique demonstrated a very reproducible manner within and between observers and acceptable scan-rescan performance in the assessment of marrow fat in rabbits.
Collapse
|
24
|
Seo DK, Kim MJ, Roh SW, Jeon SR. Morphological analysis of interbody fusion following posterior lumbar interbody fusion with cages using computed tomography. Medicine (Baltimore) 2017; 96:e7816. [PMID: 28834885 PMCID: PMC5572007 DOI: 10.1097/md.0000000000007816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Posterior lumbar interbody fusion (PLIF) using cages in conjunction with pedicle screw fixation is considered the gold standard for surgical treatment of degenerative lumbar spine disorders due to its biomechanical stability and high fusion rate. However, research regarding patterns of fusion in the interbody space during the early postoperative period is lacking.Sixty consecutive patients were recruited from May 2013 to June 2015. All patients underwent PLIF using 2 titanium cages filled with local bone chips from decompressed lamina and facet bone in conjunction with pedicle screw fixation. Computed tomography scans were obtained 3 to 6 months following surgery in order to evaluate the partial fusion state. Computed tomography (CT) classification of fusion morphology was divided into 8 groups and then into compartments according to fusion space, and the rate of fusion for each was calculated. Further follow-up was conducted to confirm fusion state and assess outcomes.The most frequent pattern of interbody fusion was bilateral intra-cage fusion with unilateral lateral bridging of extra-cage areas (N = 36, 43.4%); the least frequent was interspace bridging of the 2 cages alone (N = 0, 0%). The fusion rate for the intra-cage area (Compartment 1) reached 100%. However, the fusion in the lateral space outside of cages (Compartment 2) was not satisfactory, though reasonable (72.3%). All patients were confirmed as achieving adequate fusion at the final follow-up, with improved clinical outcomes.Widening of the contact area between the vertebral body and cages is recommended to promote increased interbody fusion during the early postoperative period.
Collapse
|
25
|
Li G, Xu Z, Gu H, Li X, Yuan W, Chang S, Fan J, Calimente H, Hu J. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females. J Magn Reson Imaging 2016; 45:66-73. [PMID: 27341545 DOI: 10.1002/jmri.25351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To validate a chemical shift-encoded (CSE) water-fat imaging for quantifying marrow fat fraction (FF), using proton magnetic resonance spectroscopy (MRS) as reference. MATERIALS AND METHODS Multiecho T2 -corrected MRS and CSE imaging with eight-echo gradient-echo acquisitions at 3T were performed to calculate marrow FF in 83 subjects, including 41 with normal bone mineral density (BMD), 26 with osteopenia, and 16 with osteoporosis (based on DXA). Eight participants were scanned three times with repositioning to assess the repeatability of CSE FF map measurements. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin's concordance correlation coefficient were calculated. RESULTS The Pearson correlation coefficient was 0.979 and Lin's concordance correlation coefficient was 0.962 between CSE-based FF and MRS-based FF. All data points, calculated using the Bland-Altman method, were within the limits of agreement. The intra- and interrater agreement for average CSE-based FF was excellent (intrarater, intraclass correlation coefficient [ICC] = 0.993; interrater, ICC = 0.976-0.982 for different BMD groups). In the subgroups of varying BMD, inverse correlations were observed to be very similar between BMD (r = -0.560 to -0.710), T-score (r = -0.526 to -0.747), and CSE-based FF, and between BMD (r = -0.539 to -0.706), T-score (r = -0.501 to -0.742), and MRS-based FF even controlling for age, years since menopause, and body mass index. The repeatability for CSE FF map measurements expressed as absolute precision error was 1.45%. CONCLUSION CSE imaging is equally accurate in characterizing marrow fat content as MRS. Given its excellent correlation and concordance with MRS, the CSE sequence could be used as a potential replacement technique for marrow fat quantification. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:66-73.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Zheng Xu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Hao Gu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzheng Fan
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Horea Calimente
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
26
|
Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016; 47 Suppl 2:S11-20. [PMID: 27338221 PMCID: PMC4955555 DOI: 10.1016/s0020-1383(16)47003-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility.
Collapse
Affiliation(s)
- Georg Osterhoff
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lamya Karim
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Laoise M. McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland,National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - Peter Augat
- Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria,Corresponding author at: Institute of Biomechanics, Berufsgenossenschaftliche Unfallklinik, Murnau Prof.-Kuentscher-Str. 8, D-82418 Murnau am Staffelsee, Germany. Tel.: +49 8841 484563; fax: +49 8841 484573. (P. Augat)
| |
Collapse
|
27
|
Hybrid Stabilization of Thoracic Spine Fractures with Sublaminar Bands and Transpedicular Screws: Description of a Surgical Alternative and Review of the Literature. Case Rep Orthop 2015; 2015:857607. [PMID: 26649214 PMCID: PMC4663301 DOI: 10.1155/2015/857607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 11/29/2022] Open
Abstract
Stabilization of unstable thoracic fractures with transpedicular screws is widely accepted. However, placement of transpedicular screws can cause complications, particularly in the thoracic spine with physiologically small pedicles. Hybrid stabilization, a combination of sublaminar bands and pedicle screws, might reduce the rate of misplaced screws and can be helpful in special anatomic circumstances, such as preexisting scoliosis and osteoporosis. We report about two patients suffering from unstable thoracic fractures, of T5 in one case and T3, T4, and T5 in the other case, with preexisting scoliosis and extremely small pedicles. Additionally, one patient had osteoporosis. Patients received hybrid stabilization with pedicle screws adjacent to the fractured vertebral bodies and sublaminar bands at the level above and below the pedicle screws. No complications occurred. Follow-up was 12 months with clinically uneventful postoperative courses. No signs of implant failure or loss of reduction could be detected. In patients with very small thoracic pedicles, scoliosis, and/or osteoporosis, hybrid stabilization with sublaminar bands and pedicle screws can be a viable alternative to long pedicle screw constructs.
Collapse
|
28
|
Oxland TR. Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions. J Biomech 2015; 49:817-832. [PMID: 26706717 DOI: 10.1016/j.jbiomech.2015.10.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/10/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Since the publication of the 2nd edition of White and Panjabi׳s textbook, Clinical Biomechanics of the Spine in 1990, there has been considerable research on the biomechanics of the spine. The focus of this manuscript will be to review what we have learned in regards to the fundamentals of spine biomechanics. Topics addressed include the whole spine, the functional spinal unit, and the individual components of the spine (e.g. vertebra, intervertebral disc, spinal ligaments). In these broad categories, our understanding in 1990 is reviewed and the important knowledge or understanding gained through the subsequent 25 years of research is highlighted. Areas where our knowledge is lacking helps to identify promising topics for future research. In this manuscript, as in the White and Panjabi textbook, the emphasis is on experimental research using human material, either in vivo or in vitro. The insights gained from mathematical models and animal experimentation are included where other data are not available. This review is intended to celebrate the substantial gains that have been made in the field over these past 25 years and also to identify future research directions.
Collapse
Affiliation(s)
- Thomas R Oxland
- Departments of Orthopaedics and Mechanical Engineering, University of British Columbia, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Canada.
| |
Collapse
|
29
|
Dong XN, Pinninti R, Tvinnereim A, Lowe T, Di Paolo D, Shirvaikar M. Stochastic predictors from the DXA scans of human lumbar vertebrae are correlated with the microarchitecture parameters of trabecular bone. J Biomech 2015; 48:2968-75. [PMID: 26300404 DOI: 10.1016/j.jbiomech.2015.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to provide a novel stochastic assessment of inhomogeneous distribution of bone mineral density (BMD) from the Dual-energy X-ray Absorptiometry (DXA) scans of human lumbar vertebrae and identify the stochastic predictors that were correlated with the microarchitecture parameters of trabecular bone. Eighteen human lumbar vertebrae with intact posterior elements from 5 cadaveric spines were scanned in the posterior-anterior projection using a Hologic densitometer. The BMD map of human vertebrae was obtained from the raw data of DXA scans by directly operating on the transmission measurements of low- and high-energy X-ray beams. Stochastic predictors were calculated by fitting theoretical models onto the experimental variogram of the BMD map, rather than grayscale images, from DXA scans. In addition, microarchitecture parameters of trabecular bone were measured from the 3D images of human vertebrae acquired using a Micro-CT scanner. Significant correlations were observed between stochastic predictors and microarchitecture parameters. The sill variance, representing the standard deviation of the BMD map to some extent, had significantly positive correlations with bone volume, trabecular thickness, trabecular number and connectivity density. The sill variance was also negatively associated with bone surface to volume ratio and trabecular separation. This study demonstrates that the stochastic assessment of the inhomogeneous distribution of BMD from DXA scans of human lumbar vertebrae can reveal microarchitecture information of trabecular bone. However, future studies are needed to examine the potential of stochastic predictors from routine clinical DXA scans in providing bone fragility information complementary to BMD.
Collapse
Affiliation(s)
- Xuanliang Neil Dong
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Rajeshwar Pinninti
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Amy Tvinnereim
- Department of Cellular and Molecular Biology, UT Health Northeast, Tyler, TX 75708, USA
| | - Timothy Lowe
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - David Di Paolo
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Mukul Shirvaikar
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
30
|
Aaron JE, Shore PA, Itoda M, Morrison RJM, Hartopp A, Hensor EMA, Hordon LD. Mapping trabecular disconnection "hotspots" in aged human spine and hip. Bone 2015; 78:71-80. [PMID: 25874446 DOI: 10.1016/j.bone.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/11/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Trabecular bone disconnection is an independent factor in age-related skeletal failure where real termini (ReTm; rare in youth) may cause weakness disproportionate to tissue loss, yet their structural contribution at vulnerable locations remains uncertain. ReTm (previously recorded at the iliac crest) were mapped in "normal" aged vertebral bodies (T11-L5 autopsy; 20 females, 10 males) and corresponding proximal femora (autopsy; 10 females). Results were compared with biomechanically failed femora from orthopaedic subjects aged >58 yr (osteoporosis OP, 10 females; osteoarthritis OA, 10 females). A novel direct 2D/3D histological method was applied to large, thick (300 μm) slices superficially silver-stained to separate ReTm (unstained) from apparent termini (planar artefacts, brown). Light microscope field co-ordinates enabled ReTm mapping and statistical testing relative to i) sex, ii) tissue sector and iii) slicing plane. In men ReTm populations were small and random while in women they were large and sector-specific. In vertebrae they clustered anterior/superior being rare posterior/inferior; in the femoral head they concentrated distal/superior and also near the fovea, being fewer distal/inferior. A distribution polarity was evident with 100% more ReTm observed transversely (i.e., on tensile-related cross struts) than longitudinally (i.e., on compression-related vertical struts). Their numbers rose in OP (BV/TV<14%, microCT) and in OA (BV/TV>14%), remaining polarised and sector-specific in OP only. Comparative experimentation by marrow elution of an OP animal model demonstrated "floating segments" as a possible outcome. Conclusions were supported statistically that trabecular disconnection "hotspots" at vulnerable locations are sex- and sector-specific, mainly transaxial, and subject to disease modulation.
Collapse
Affiliation(s)
- Jean E Aaron
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Patricia A Shore
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mizuo Itoda
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rory J M Morrison
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andrew Hartopp
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Lesley D Hordon
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Department of Rheumatology, Dewsbury District Hospital, Mid-Yorkshire NHS Trust, Dewsbury, UK.
| |
Collapse
|
31
|
Abstract
STUDY DESIGN Biomechanical and radiographical study on cadaveric spines. OBJECTIVE To explain the pathogenesis of vertebral "anterior wedge" deformity, which causes senile kyphosis. SUMMARY OF BACKGROUND DATA This deformity arises with minimal trauma and is difficult to reproduce in cadaveric spines. We hypothesize that wedging is created by a 2-stage process. First, excessive loading damages a vertebral endplate and decompresses the adjacent intervertebral disc. This alters load sharing between the vertebral body cortex and trabeculae so that subsequent cyclic loading causes progressive collapse of the unsupported anterior cortex. METHODS Thirty-four cadaveric thoracolumbar "motion segments," aged 70 to 98 years, were positioned in flexion and overloaded in compression. Physiologically reasonable cyclic compressive loading was then applied to each flexed specimen, at progressively higher loads, for up to 2 hours. Before and after initial overload and again after cyclic loading, the distribution of loading on the vertebra was assessed from measurements of compressive stress within the adjacent disc. These "stress profiles" were repeated in the neutral, flexed, and extended postures. Progressive vertebral body deformity was assessed radiographically. RESULTS Compressive overload induced endplate fracture at an average force of 2.31 kN. There was minimal anterior wedging, but pressure in the adjacent disc nucleus (in flexion) fell by an average of 55% and neural arch load bearing increased by 166%. Subsequent cyclic loading exaggerated these changes and concentrated compressive stress within the anterior annulus. After both stages, height of the anterior and posterior vertebral cortexes was reduced by 32% and 12%, respectively, so that anterior wedging of the vertebral body increased from 5.0° to 11.4° on average. All changes were highly significant (P < 0.001). CONCLUSION Anterior wedge deformities can be created consistently by a 2-stage process involving initial endplate damage, followed by progressive collapse of the anterior cortex. Detecting initial endplate damage may be important to minimize vertebral deformity in patients with osteoporosis. LEVEL OF EVIDENCE N/A.
Collapse
|
32
|
Landham PR, Baker-Rand HLA, Gilbert SJ, Pollintine P, Annesley-Williams DJ, Adams MA, Dolan P. Is kyphoplasty better than vertebroplasty at restoring form and function after severe vertebral wedge fractures? Spine J 2015; 15:721-32. [PMID: 25450656 DOI: 10.1016/j.spinee.2014.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The vertebral augmentation procedures, vertebroplasty and kyphoplasty, can relieve pain and facilitate mobilization of patients with osteoporotic vertebral fractures. Kyphoplasty also aims to restore vertebral body height before cement injection and so may be advantageous for more severe fractures. PURPOSE The purpose of this study was to compare the ability of vertebroplasty and kyphoplasty to restore vertebral height, shape, and mechanical function after severe vertebral wedge fractures. STUDY DESIGN/SETTING This is a biomechanical and radiographic study using human cadaveric spines. METHODS Seventeen pairs of thoracolumbar "motion segments" from cadavers aged 70-98 years were injured, in a two-stage process involving flexion and compression, to create severe anterior wedge fractures. One of each pair underwent vertebroplasty and the other kyphoplasty. Specimens were then compressed at 1 kN for 1 hour to allow consolidation. Radiographs were taken before and after injury, after treatment, and after consolidation. At these same time points, motion segment compressive stiffness was assessed, and intervertebral disc "stress profiles" were obtained to characterize the distribution of compressive stress on the vertebral body and neural arch. RESULTS On average, injury reduced anterior vertebral body height by 34%, increased its anterior wedge angle from 5.0° to 11.4°, reduced intradiscal (nucleus) pressure and motion segment stiffness by 96% and 44%, respectively, and increased neural arch load bearing by 57%. Kyphoplasty caused 97% of the anterior height loss to be regained immediately, although this reduced to 79% after consolidation. Equivalent gains after vertebroplasty were significantly lower: 59% and 47%, respectively (p<.001). Kyphoplasty reduced vertebral wedging more than vertebroplasty (p<.02). Intradiscal pressure, neural arch load bearing, and motion segment compressive stiffness were restored significantly toward prefracture values after both augmentation procedures, even after consolidation, but these mechanical effects were similar for kyphoplasty and vertebroplasty. CONCLUSIONS After severe vertebral wedge fractures, vertebroplasty and kyphoplasty were equally effective in restoring mechanical function. However, kyphoplasty was better able to restore vertebral height and reverse wedge deformity.
Collapse
Affiliation(s)
- Priyan R Landham
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK
| | - Holly L A Baker-Rand
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK
| | - Samuel J Gilbert
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK
| | - Phillip Pollintine
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK
| | | | - Michael A Adams
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK
| | - Patricia Dolan
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell St, Bristol BS2 8EJ, UK.
| |
Collapse
|
33
|
Arentsen L, Yagi M, Takahashi Y, Bolan PJ, White M, Yee D, Hui S. Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 2015; 72:118-22. [PMID: 25460181 PMCID: PMC4282942 DOI: 10.1016/j.bone.2014.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/10/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
PURPOSE The marrow composition throughout the body is heterogeneous and changes with age. Due to heterogeneity, invasive biopsies of the iliac crest do not truly represent the complete physiological status, impeding the clinical effectiveness of this method. Therefore, we aim to provide verification for an in vivo imaging technique using co-registered histologic examinations for assessment of marrow adiposity. METHODS Five recently expired (i.e. <24h) human cadavers were scanned with a dual source CT (DECT) scanner in order to measure marrow fat in the lumbar vertebrae. These donors were also imaged using water-fat MRI (wfMRI) which was used to estimate the fraction of yellow marrow. After imaging, lumbar columns were excised and the superior and inferior aspects of 21 vertebrae were removed. The remaining center section was processed for histological examination to find the ratio of adipocyte volume per tissue volume (AV/TV). RESULTS Results of DECT and wfMRI had a high correlation (r = 0.88). AV/TV ranged from 0.18 to 0.75 with a mean (SD) of 0.36 (0.18). Inter-evaluator reliability for AV/TV was r > 0.984. There were similar correlations between AV/TV and the imaging modalities, DECT-derived MF and wfMRI (r = 0.802 and 0.772, respectively). CONCLUSIONS A high MF variation was seen among the 25 vertebrae imaged. Both DECT and wfMRI have a good correlation with the histologic adipocyte proportion and can be used to measure MF. This makes longitudinal studies possible without painful, less-effective, invasive biopsies.
Collapse
Affiliation(s)
- Luke Arentsen
- Department of Therapeutic Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Yutaka Takahashi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrick J Bolan
- Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN, USA
| | - Melissa White
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Susanta Hui
- Department of Therapeutic Radiology, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
34
|
Aiyangar AK, Vivanco J, Au AG, Anderson PA, Smith EL, Ploeg HL. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. J Biomech Eng 2015; 136:091003. [PMID: 24825322 DOI: 10.1115/1.4027663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Indexed: 11/08/2022]
Abstract
Most studies investigating human lumbar vertebral trabecular bone (HVTB) mechanical property-density relationships have presented results for the superior-inferior (SI), or "on-axis" direction. Equivalent, directly measured data from mechanical testing in the transverse (TR) direction are sparse and quantitative computed tomography (QCT) density-dependent variations in the anisotropy ratio of HVTB have not been adequately studied. The current study aimed to investigate the dependence of HVTB mechanical anisotropy ratio on QCT density by quantifying the empirical relationships between QCT-based apparent density of HVTB and its apparent compressive mechanical properties--elastic modulus (E(app)), yield strength (σ(y)), and yield strain (ε(y))--in the SI and TR directions for future clinical QCT-based continuum finite element modeling of HVTB. A total of 51 cylindrical cores (33 axial and 18 transverse) were extracted from four L1 human lumbar cadaveric vertebrae. Intact vertebrae were scanned in a clinical resolution computed tomography (CT) scanner prior to specimen extraction to obtain QCT density, ρ(CT). Additionally, physically measured apparent density, computed as ash weight over wet, bulk volume, ρ(app), showed significant correlation with ρ(CT) [ρ(CT) = 1.0568 × ρ(app), r = 0.86]. Specimens were compression tested at room temperature using the Zetos bone loading and bioreactor system. Apparent elastic modulus (E(app)) and yield strength (σ(y)) were linearly related to the ρ(CT) in the axial direction [E(SI) = 1493.8 × (ρ(CT)), r = 0.77, p < 0.01; σ(Y,SI) = 6.9 × (ρ(CT)) − 0.13, r = 0.76, p < 0.01] while a power-law relation provided the best fit in the transverse direction [E(TR) = 3349.1 × (ρ(CT))(1.94), r = 0.89, p < 0.01; σ(Y,TR) = 18.81 × (ρ(CT))(1.83), r = 0.83, p < 0.01]. No significant correlation was found between ε(y) and ρ(CT) in either direction. E(app) and σ(y) in the axial direction were larger compared to the transverse direction by a factor of 3.2 and 2.3, respectively, on average. Furthermore, the degree of anisotropy decreased with increasing density. Comparatively, ε(y) exhibited only a mild, but statistically significant anisotropy: transverse strains were larger than those in the axial direction by 30%, on average. Ability to map apparent mechanical properties in the transverse direction, in addition to the axial direction, from CT-based densitometric measures allows incorporation of transverse properties in finite element models based on clinical CT data, partially offsetting the inability of continuum models to accurately represent trabecular architectural variations.
Collapse
|
35
|
Churojana A, Songsaeng D, Khumtong R, Suwanbundit A, Saliou G. Is intervertebral cement leakage a risk factor for new adjacent vertebral collapse? Interv Neuroradiol 2014; 20:637-45. [PMID: 25363269 DOI: 10.15274/inr-2014-10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/15/2014] [Indexed: 11/12/2022] Open
Abstract
This retrospective study evaluated the relationship between intervertebral cement leakage and new adjacent vertebral fracture and describes the different characteristics of cement leakage. Increased risk of new adjacent vertebral fracture (NF) has been reported to be a complication of cement leakage in vertebroplasty. In our observation, an incidental intervertebral cement leakage may occur during vertebroplasty but is commonly asymptomatic. The study focused on osteoporotic collapse patients who had percutaneous vertebroplasty (PV) between 2005 and 2007. We divided patients into leakage and non-leakage groups and compared the incidence of NF. Leakage characteristics were divided into three types: Type I intervertebral-extradiscal leakage, Type II intradiscal leakage and Type III combined leakage. Visual analog scale for pain and the Karnofsky Performance Status at 24 h, three months, six months and one year were compared between groups and types of leakages. Among 148 PVs (102 patients) there were 30 leakages (20.27%) and 21(14.19%) NFs. The incidence of NF did not significantly differ between leakage and non-leakage groups (P<0.05). Type II was the most common type of leakage (15/30). Reduction of average pain and improvement of Karnofsky Performance Status score did not differ between groups (P< 0.05). Type II had decreased pain score < type I and III at 24 h (P < 0.01), three months and six months (P < 0.1) but not at one year (P<0.10). Type II also had decreased pain score < non-leakage group only at 24 h (P<0.05). Intervertebral cement leakage is not an increased risk for NF, influenced outcomes of pain relief or improvement of physical function. Intradiscal leakage (Type II) is the most common characteristic of cement leakage and probably related to delayed pain relief.
Collapse
Affiliation(s)
- Anchalee Churojana
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University; Bangkok, Thailand - -
| | - Dittapong Songsaeng
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University; Bangkok, Thailand
| | - Rujimas Khumtong
- Department of Radiology, Faculty of Medicine, Songklanagarin Hospital, Prince of Songkla University; Thailand
| | - Anek Suwanbundit
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University; Bangkok, Thailand
| | - Guillaume Saliou
- Service de Neuroradiologie Diagnostique Therapeutique, Hospital de Bicêtre-University; Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
36
|
Briggs AM, Perilli E, Codrington J, Reynolds KJ, Parkinson IH, Wark JD. Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density. Calcif Tissue Int 2014; 95:97-107. [PMID: 24858710 DOI: 10.1007/s00223-014-9866-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R (2) 0.84) and across the six subregions (ROIs 2-7) (adjusted R (2) range 0.58-0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified 'low aBMD', compared to those with 'high aBMD', particularly in the anterior subregion where the adjusted R (2) differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body.
Collapse
Affiliation(s)
- Andrew M Briggs
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, WA, Australia,
| | | | | | | | | | | |
Collapse
|
37
|
Hazrati Marangalou J, Eckstein F, Kuhn V, Ito K, Cataldi M, Taddei F, van Rietbergen B. Locally measured microstructural parameters are better associated with vertebral strength than whole bone density. Osteoporos Int 2014; 25:1285-96. [PMID: 24306231 DOI: 10.1007/s00198-013-2591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023]
Abstract
UNLABELLED Whole vertebrae areal and volumetric bone mineral density (BMD) measurements are not ideal predictors of vertebral fractures. We introduce a technique which enables quantification of bone microstructural parameters at precisely defined anatomical locations. Results show that local assessment of bone volume fraction at the optimal location can substantially improve the prediction of vertebral strength. INTRODUCTION Whole vertebrae areal and volumetric BMD measurements are not ideal predictors of vertebral osteoporotic fractures. Recent studies have shown that sampling bone microstructural parameters in smaller regions may permit better predictions. In such studies, however, the sampling location is described only in general anatomical terms. Here, we introduce a technique that enables the quantification of bone volume fraction and microstructural parameters at precisely defined anatomical locations. Specific goals of this study were to investigate at what anatomical location within the vertebrae local bone volume fraction best predicts vertebral-body strength, whether this prediction can be improved by adding microstructural parameters and to explore if this approach could better predict vertebral-body strength than whole bone volume fraction and finite element (FE) analyses. METHODS Eighteen T12 vertebrae were scanned in a micro-computed tomography (CT) system and FE meshes were made using a mesh-morphing tool. For each element, bone microstructural parameters were measured and correlated with vertebral compressive strength as measured experimentally. Whole bone volume fraction and FE-predicted vertebral strength were also compared to the experimental measurements. RESULTS A significant association between local bone volume fraction measured at a specific central region and vertebral-body strength was found that could explain up to 90% of the variation. When including all microstructural parameters in the regression, the predictive value of local measurements could be increased to 98%. Whole bone volume fraction could explain only 64% and FE analyses 76% of the variation in bone strength. CONCLUSIONS A local assessment of volume fraction at the optimal location can substantially improve the prediction of bone strength. Local assessment of other microstructural parameters may further improve this prediction but is not clinically feasible using current technology.
Collapse
Affiliation(s)
- J Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Hazrati Marangalou J, Ito K, Taddei F, van Rietbergen B. Inter-individual variability of bone density and morphology distribution in the proximal femur and T12 vertebra. Bone 2014; 60:213-20. [PMID: 24370733 DOI: 10.1016/j.bone.2013.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023]
Abstract
Bone geometry, density and microstructure can vary widely between subjects. Knowledge about this variation in a population is of interest in particular for the design of orthopedic implants and interventions. The goal of this study is to investigate the local variability of bone density and microstructural parameters between subjects using a novel inter-subject image registration approach. Human proximal femora of 29 and T12 vertebrae of 20 individuals were scanned using a HR-pQCT and a micro-CT system, respectively. A pre-defined iso-anatomic mesh template was morphed to each micro-CT scan. For each element bone volume fraction and other morphological parameters (Tb.Th, Tb.N, Tb.Sp, SMI, DA) were determined and assigned to the element. A coefficient of variation (CV) was calculated for each parameter at each element location of the 29 femora and 20 T12 vertebrae. Contour plots of the CV distribution revealed very detailed information about the inter-individual variation in bone density and morphology. It is also shown that analyzing large sub-volumes, as commonly done in previous studies, would miss much of this variation. Detailed quantitative information of bone morphological parameters for each sample in the femur and the T12 database and their inter-individual variability are available from the mesh templates as supplementary data (http://w3.bmt.tue.nl/nl/fe_database/). We expect that these results can help to optimize implants and orthopedic procedures by taking local bone morphological parameter variations into account.
Collapse
Affiliation(s)
- Javad Hazrati Marangalou
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fulvia Taddei
- Laboratorio di Tecnologia Medica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
39
|
Wang Y, Owoc JS, Boyd SK, Videman T, Battié MC. Occupational loading may not affect the association between vertebral trabecular bone and intervertebral disc narrowing. Bone 2013; 57:375-6. [PMID: 24056251 DOI: 10.1016/j.bone.2013.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
40
|
Hussein AI, Jackman TM, Morgan SR, Barest GD, Morgan EF. The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength. Osteoporos Int 2013; 24:3021-30. [PMID: 23863990 PMCID: PMC4465501 DOI: 10.1007/s00198-013-2417-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED This study's goal was to determine associations among the intravertebral heterogeneity in bone density, bone strength, and intervertebral disc (IVD) health. Results indicated that predictions of vertebral strength can benefit from considering the magnitude of the density heterogeneity and the congruence between the spatial distribution of density and IVD health. INTRODUCTION This study aims to determine associations among the intravertebral heterogeneity in bone density, bone strength, and IVD health METHODS Regional measurements of bone density were performed throughout 30 L1 vertebral bodies using micro-computed tomography (μCT) and quantitative computed tomography (QCT). The magnitude of the intravertebral heterogeneity in density was defined as the interquartile range and quartile coefficient of variation in regional densities. The spatial distribution of density was quantified using ratios of regional densities representing different anatomical zones (e.g., anterior to posterior regional densities). Cluster analysis was used to identify groups of vertebrae with similar spatial distributions of density. Vertebral strength was measured in compression. IVD health was assessed using two scoring systems. RESULTS QCT- and μCT-based measures of the magnitude of the intravertebral heterogeneity in density were strongly correlated with each other (p < 0.005). Accounting for the interquartile range in regional densities improved predictions of vertebral strength as compared to predictions based only on mean density (R (2) = 0.59 vs. 0.43; F-test p-value = 0.018). Specifically, after adjustment for mean density, vertebral bodies with greater heterogeneity in density exhibited higher strength. No single spatial distribution of density was associated with high vertebral strength. Analyses of IVD scores suggested that the health of the adjacent IVDs may modulate the effect of a particular spatial distribution of density on vertebral strength. CONCLUSIONS Noninvasive measurements of the intravertebral distribution of bone density, in conjunction with assessments of IVD health, can aid in predictions of bone strength and in elucidating biomechanical mechanisms of vertebral fracture.
Collapse
Affiliation(s)
- A I Hussein
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA,
| | | | | | | | | |
Collapse
|
41
|
Thomsen JS, Niklassen AS, Ebbesen EN, Brüel A. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone 2013; 57:47-55. [PMID: 23899636 DOI: 10.1016/j.bone.2013.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory hypertrophy of vertical trabeculae in women, but not in men.
Collapse
|
42
|
Unnikrishnan GU, Barest GD, Berry DB, Hussein AI, Morgan EF. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra. J Biomech Eng 2013; 135:101007-11. [PMID: 23942609 PMCID: PMC3792403 DOI: 10.1115/1.4025179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/27/2013] [Accepted: 08/05/2013] [Indexed: 11/08/2022]
Abstract
Intra- and inter-specimen variations in trabecular anisotropy are often ignored in quantitative computed tomography (QCT)-based finite element (FE) models of the vertebra. The material properties are typically estimated solely from local variations in bone mineral density (BMD), and a fixed representation of elastic anisotropy ("generic anisotropy") is assumed. This study evaluated the effect of incorporating specimen-specific, trabecular anisotropy on QCT-based FE predictions of vertebral stiffness and deformation patterns. Orthotropic material properties estimated from microcomputed tomography data ("specimen-specific anisotropy"), were assigned to a large, columnar region of the L1 centrum (n = 12), and generic-anisotropic material properties were assigned to the remainder of the vertebral body. Results were compared to FE analyses in which generic-anisotropic properties were used throughout. FE analyses were also performed on only the columnar regions. For the columnar regions, the axial stiffnesses obtained from the two categories of material properties were uncorrelated with each other (p = 0.604), and the distributions of minimum principal strain were distinctly different (p ≤ 0.022). In contrast, for the whole vertebral bodies in both axial and flexural loading, the stiffnesses obtained using the two categories of material properties were highly correlated (R2 > 0.82, p < 0.001) with, and were no different (p > 0.359) from, each other. Only moderate variations in strain distributions were observed between the two categories of material properties. The contrasting results for the columns versus vertebrae indicate a large contribution of the peripheral regions of the vertebral body to the mechanical behavior of this bone. In companion analyses on the effect of the degree of anisotropy (DA), the axial stiffnesses of the trabecular column (p < 0.001) and vertebra (p = 0.007) increased with increasing DA. These findings demonstrate the need for accurate modeling of the peripheral regions of the vertebral body in analyses of the mechanical behavior of the vertebra.
Collapse
|
43
|
DensiProbe Spine: an intraoperative measurement of bone quality in spinal instrumentation. A clinical feasibility study. Spine J 2013; 13:1223-9. [PMID: 23999229 DOI: 10.1016/j.spinee.2013.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A new device, DensiProbe, has been developed to provide surgeons with intraoperative information about bone strength by measuring the peak breakaway torque. In cases of low bone quality, the treatment can be adapted to the patient's condition, for example, by improving screw-anchorage with augmentation techniques. PURPOSE The objective of this study was to investigate the feasibility of DensiProbe Spine in patients undergoing transpedicular fixation. STUDY DESIGN Prospective feasibility study on consecutive patients. PATIENT SAMPLE Fourteen women and 16 men were included in this study. OUTCOME MEASURES Local and general bone quality. METHODS These consecutive patients scheduled for transpedicular fixation were evaluated for bone mineral density (BMD), which was measured globally by dual-energy X-ray absorptiometry and locally via biopsies using quantitative microcomputed tomography. The breakaway torque force within the vertebral body was assessed intraoperatively via the transpedicular approach with the DensiProbe Spine. The results were correlated with the areal BMD at the lumbar spine and the local volumetric BMD (vBMD) and a subjective impression of bone strength. The feasibility of the method was evaluated, and the clinical and radiological performance was evaluated over a 1-year follow-up. This study was funded by an AO Spine research grant; DensiProbe was developed at the AO Research Institute Davos, Switzerland; the AO Foundation is owner of the intellectual property rights. RESULTS In 30 patients, 69 vertebral levels were examined. The breakaway torque consistently correlated with an experienced surgeon's quantified impression of resistance as well as with vBMD of the same vertebra. Beyond a marginal prolongation of surgery time, no adverse events related to the usage of the device were observed. CONCLUSIONS The intraoperative transpedicular measurement of the peak breakaway torque was technically feasible, safe, and reliably predictive of local vBMD during dorsal spinal instrumentations in a clinical setting. Larger studies are needed to define specific thresholds that indicate a need for the augmentation or instrumentation of additional levels.
Collapse
|
44
|
Wang Y, Owoc JS, Boyd SK, Videman T, Battié MC. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing. Bone 2013; 56:249-54. [PMID: 23810839 DOI: 10.1016/j.bone.2013.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Previous studies suggest that age and disc degeneration are associated with variations in vertebral trabecular architecture. In particular, disc space narrowing, a severe form of disc degeneration, may predispose the anterior portion of a vertebra to fracture. We studied 150 lumbar vertebrae and 209 intervertebral discs from 48 cadaveric lumbar spines of middle-aged men to investigate regional trabecular differences in relation to age, disc degeneration and disc narrowing. The degrees of disc degeneration and narrowing were evaluated using radiography and discography. The vertebrae were dried and scanned on a μCT system. The μCT images of each vertebral body were processed to include only vertebral trabeculae, which were first divided into superior and inferior regions, and further into central and peripheral regions, and then anterior and posterior regions. Structural analyses were performed to obtain trabecular microarchitecture measurements for each vertebral region. On average, the peripheral region had 12-15% greater trabecular bone volume fraction and trabecular thickness than the central region (p<0.01). Greater age was associated with better trabecular structure in the peripheral region relative to the central region. Moderate and severe disc degeneration were associated with higher trabecular thickness in the peripheral region of the vertebral trabeculae (p<0.05). The anterior region was of lower bone quality than the posterior region, which was not associated with age. Slight to moderate narrowing was associated with greater trabecular bone volume fraction in the anterior region of the inferior vertebra (p<0.05). Similarly, greater disc narrowing was associated with higher trabecular thickness in the anterior region (p<0.05). Better architecture of peripheral trabeculae relative to central trabeculae was associated with both age and disc degeneration. In contrast to the previous view that disc narrowing stress-shields the anterior vertebra, disc narrowing tended to associate with better trabecular architecture in the anterior region, as opposed to the posterior region.
Collapse
Affiliation(s)
- Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | |
Collapse
|
45
|
Hussein AI, Morgan EF. The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 2013; 24:979-89. [PMID: 22707063 PMCID: PMC3573258 DOI: 10.1007/s00198-012-2039-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED The goal of this study was to determine the influence of intravertebral heterogeneity in microstructure on vertebral failure. Results show that noninvasive assessments of the intravertebral heterogeneity in density improve predictions of vertebral strength and that local variations in microstructure are associated with locations of failure in the vertebral body. INTRODUCTION The overall goal of this study was to determine the influence of intravertebral heterogeneity in microstructure on vertebral failure. METHODS Trabecular density and microarchitecture were quantified for 32 thoracic vertebrae using micro-computed tomography (μCT)-based analyses of 4.81 mm, contiguous cubes throughout the centrum. Intravertebral heterogeneity in density was defined as the interquartile range and quartile coefficient of variation of the cube densities. The vertebrae were compressed to failure to measure stiffness, strength, and toughness. Pre- and post-compression μCT images were analyzed using digital volume correlation to quantify failure patterns in the vertebrae, as defined by the distributions of residual strain. RESULTS Failure patterns consisted of large deformations in the midtransverse plane with concomitant endplate biconcavity and were linked to the intravertebral distribution of bone tissue. Low values of connectivity density and trabecular number, and high values of trabecular separation, were associated with high strains. However, local microstructural properties were not the sole determinants of failure. For instance, the midtransverse plane experienced the highest strain (p < 0.008) yet had the highest density, lowest structure model index, and lowest anisotropy (p < 0.013). Accounting for the intravertebral heterogeneity in density improved predictions of strength and stiffness as compared to predictions based only on mean density (strength: R(2) = 0.75 vs. 0.61, p < 0.001; stiffness: R(2) = 0.44 vs. 0.26, p = 0.001). CONCLUSIONS Local variations in microstructure are associated with failure patterns in the vertebra. Noninvasive assessments of the intravertebral heterogeneity in density--which are feasible in clinical settings--can improve predictions of vertebral strength and stiffness.
Collapse
Affiliation(s)
- Amira I. Hussein
- Department of Mechanical Engineering, Boston University, 110 Cummington St., Boston, MA 02215, Phone: 617-358-3419, Fax: 617-353-5866
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington St., Boston, MA 02215, Phone: 617-353-2791, Fax: 617-353-5866
| |
Collapse
|
46
|
Abstract
Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.
Collapse
Affiliation(s)
- Aaron J Fields
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, S-1161, San Francisco, CA, 94143-0514, USA.
| | | |
Collapse
|
47
|
WOLFRAM UWE, WILKE HANSJOACHIM, ZYSSET PHILIPPEK. TRANSVERSE ISOTROPIC ELASTIC PROPERTIES OF VERTEBRAL TRABECULAR BONE MATRIX MEASURED USING MICROINDENTATION UNDER DRY CONDITIONS (EFFECTS OF AGE, GENDER, AND VERTEBRAL LEVEL). J MECH MED BIOL 2012. [DOI: 10.1142/s0219519410003241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanical properties of bone extracellular matrix have become of increasing interest for the understanding of vertebral fracture risk. Depth-sensing indentation techniques allow the measurement of directional elastic properties of trabecular bone ex vivo with a high spatial resolution. Transverse isotropic elastic properties of vertebral trabecular bone obtained from two orthogonal directions were investigated using microindentation under dry conditions focusing on the influence of microanatomical location, age, gender, vertebral level, and anatomic direction on these properties. Biopsies were obtained from 104 human vertebrae (T1–L3) with a median age of 65 (21–94) years. Significantly, higher indentation moduli were found for indentations on axial than on transverse cross-sections of trabeculae (p < 0.01). Indentation moduli in the core were 1.05 to 1.12 times higher than in the periphery (p < 0.01). No difference in stiffness could be detected between males and females (p > 0.05) and different ages (p > 0.5). Vertebral level showed a weak correlation (p = 0.073, r2 ≈ 0.17). These results provide insights in the transverse isotropic properties of trabecular bone matrix related to age, gender, microanatomical location, and anatomic direction for a broad spectrum of human vertebrae.
Collapse
Affiliation(s)
- UWE WOLFRAM
- Institute for Orthopaedic Research and Biomechanics, Ulm University, Helmholtzstraße 14, D – 89081 Ulm, Germany
| | - HANS-JOACHIM WILKE
- Institute for Orthopaedic Research and Biomechanics, Ulm University, Helmholtzstraße 14, D – 89081 Ulm, Germany
| | - PHILIPPE K. ZYSSET
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gußhausstraße 27 – 29, A – 1040 Vienna, Austria
| |
Collapse
|
48
|
Briggs AM, Perilli E, Parkinson IH, Kantor S, Wrigley TV, Fazzalari NL, Wark JD. Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography. J Bone Miner Metab 2012; 30:222-31. [PMID: 21912838 DOI: 10.1007/s00774-011-0307-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
Although a strong relationship exists between areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) and bone strength, the predictive validity of aBMD for osteoporotic vertebral fractures remains suboptimal. The diagnostic sensitivity of DXA may be improved by assessing aBMD within vertebral subregions, rather than relying on an estimate derived from the total area of the vertebra. The objective of this study was to validate a method of measuring subregional vertebral aBMD in vitro using lateral-projection DXA against subregional volumetric BMD (vBMD) measured with peripheral quantitative computed tomography (pQCT). A mixed set of 49 lumbar and thoracic vertebrae from 25 donors were scanned using lateral-projection DXA and pQCT. aBMD and apparent vBMD were measured in 7 vertebral regions (1 total area and 6 subregions) from the lateral DXA scan. vBMD was calculated in anatomically equivalent regions from pQCT scan data, using a customised software program designed to increase efficiency of the analysis process. Significant differences in densitometric parameters between subregions were observed by DXA and pQCT (P < 0.01). Subregional vBMD derived from pQCT was explained by a significant proportion of the variance in DXA-derived aBMD (R (2) = 0.51-0.67, P < 0.05) and apparent vBMD (R (2) = 0.64-0.75, P < 0.05). These results confirm the validity of measuring aBMD in vertebral subregions using lateral-projection DXA. The clinical significance should now be explored.
Collapse
Affiliation(s)
- Andrew M Briggs
- Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC. Morphology of the human vertebral endplate. J Orthop Res 2012; 30:280-7. [PMID: 21812023 PMCID: PMC3209496 DOI: 10.1002/jor.21513] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/08/2011] [Indexed: 02/04/2023]
Abstract
It is presumed that poor intervertebral disc cell nutrition is a contributing factor in degeneration, and is exacerbated by vertebral endplate sclerosis. Yet, quantitative relationships between endplate morphology and degeneration are unavailable. We investigated how endplate bone microstructure relates to indices of disc degeneration, such as morphologic grade, proteoglycan content, and cell density. Intervertebral core samples [n = 96, 14 subjects, L1-L5 level, ages 35-85 (64 ± 16 years), degeneration grade 1 (n = 4), grade 2 (n = 32), grade 3 (n = 44), grade 4 (n = 10), grade 5 (n = 6)] that included subchondral bone, cartilage endplate, and adjacent nucleus were harvested from human cadaveric lumbar spines. The morphology of the vertebral endplate was analyzed using µCT and the adjacent nucleus tissue was collected for biochemical and cellular analyses. Relationships between vertebral endplate morphology and adjacent disc degeneration were analyzed. Contrary to the prevailing notion, vertebral endplate porosity increased between 50% and 130% and trabecular thickness decreased by between 20% and 50% with advancing disc degeneration (p < 0.05). We also observed that nucleus cell density increased (R(2) = 0.33, p < 0.05) and proteoglycan content decreased (R(2) = 0.47, p < 0.05) as the endplate became more porous. Our data suggest that endplate sclerosis is not a fundamental factor contributing to disc degeneration. Rather, the opposite was observed in our samples, as the endplate became progressively more porous with age and degeneration. Since ischemic disc cell behavior is commonly associated with degenerative change, this may be related to other factors such as the quality of vertebral capillaries, as opposed to decreased permeability of intervening tissues.
Collapse
Affiliation(s)
- Azucena G. Rodriguez
- Department of Orthopaedic Surgery, University of California, San Francisco CA 94143, USA
| | | | - Andrew J. Burghardt
- Department of Radiology, University of California, San Francisco, CA 94143 USA
| | - Sigurd Berven
- Department of Orthopaedic Surgery, University of California, San Francisco CA 94143, USA
| | - Sharmila Majumdar
- Department of Radiology, University of California, San Francisco, CA 94143 USA
| | - Jeffrey C. Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco CA 94143, USA
| |
Collapse
|
50
|
Osteoporotic characteristics persist in the spine of ovariectomized sheep after withdrawal of corticosteroid administration. J Osteoporos 2012; 2012:182509. [PMID: 23091772 PMCID: PMC3468144 DOI: 10.1155/2012/182509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
A validated ovine model of osteoporosis achieves severe bone loss in a relatively short period. This study investigated if osteoporotic features persist in this model after cessation of corticosteroid administration. Methods. Osteoporosis was induced in nine ewes by chronic corticosteroid injection, ovariectomy, and low calcium diet. Six ewes were used as controls. Bone mineral density (BMD) of the lumbar spine (LS) and body weight were assessed at regular intervals. After five months, corticosteroid treatment was withdrawn systematically over one month. Three months later, all animals were euthanised, and the LS was collected for histomorphometric analysis. Results. BMD in the LS of osteoporotic sheep was 25% lower than control sheep. Body weight of osteoporotic sheep was reduced in the first month of the corticosteroid withdrawal period but returned to baseline level thereafter. Trabecular bone volume of LS in osteoporotic sheep was 27% lower than controls and showed a heterogeneous structure. Conclusions. Osteoporotic characteristics remain in the vertebra after ceasing corticosteroid administration providing an opportunity to evaluate potential systemic or local treatments in vivo under realistic physiological conditions. The microstructural arrangement of vertebral trabecular bone in sheep is similar to humans demonstrating further relevance of this model for preclinical investigations.
Collapse
|