1
|
Harris TL, Silva MJ. Dmp1 Lineage Cells Contribute Significantly to Periosteal Lamellar Bone Formation Induced by Mechanical Loading But Are Depleted from the Bone Surface During Rapid Bone Formation. JBMR Plus 2022; 6:e10593. [PMID: 35309865 PMCID: PMC8914163 DOI: 10.1002/jbm4.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Previous work has shown that osteoprogenitor cells (Prx1+) and pre‐osteoblasts (Osx+) contribute to mechanical loading‐induced bone formation. However, the role of mature Dmp1‐expressing osteoblasts has not been reported. In this study we assessed the contribution of osteoblast lineage cells to bone formation at an early time point following mechanical loading (day 8 from onset of loading). We labeled Osx‐expressing and Dmp1‐expressing cells in inducible Osx and Dmp1 reporter mice (iOsx‐Ai9, iDmp1‐Ai9), respectively, 3 weeks before loading. Mice were then loaded daily for 5 days (days 1–5) and were dosed with 5‐ethynyl‐2′‐deoxyuridine (EdU) in their drinking water until euthanasia on day 8. Mice were loaded to lamellar and woven bone inducing stimulation (−7 N/1400 με, −10 N/2000 με) to assess differences in these processes. We found varied responses in males and females to the loading stimuli, inducing modest lamellar (females, −7 N), moderate lamellar (males, −10 N), and robust woven (females, −10 N) bone. Overall, we found that preexisting (ie, lineage positive) Osx‐expressing and Dmp1‐expressing cells contribute largely to the bone formation response, especially during modest bone formation, while our results stuggest that other (non‐lineage–positive) cells support the sustained bone formation response during rapid bone formation. With moderate or robust levels of bone formation, a decrease in preexisting Osx‐expressing and Dmp1‐expressing cells at the bone surface occurred, with a near depletion of Dmp1‐expressing cells from the surface in female mice loaded to −10 N (from 52% to 11%). These cells appeared to be replaced by lineage‐negative cells from the periosteum. We also found a dose response in proliferation, with 17% to 18% of bone surface cells arising via proliferation in modest lamellar, 38% to 53% in moderate lamellar, and 59% to 81% in robust woven bone formation. In summary, our results show predominant contributions by preexisting Osx and Dmp1 lineage cells to loading‐induced lamellar bone formation, whereas recruitment of earlier osteoprogenitors and increased cell proliferation support robust woven bone formation. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Taylor L. Harris
- Department of Orthopaedic Surgery and Musculoskeletal Research Center Washington University School of Medicine St. Louis MO USA
- Department of Biomedical Engineering Washington University St. Louis MO USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
2
|
Jang E, Ha J, Baek KH, Kang MI. Changes in Serum Dickkopf-1, RANK Ligand, Osteoprotegerin, and Bone Mineral Density after Allogeneic Hematopoietic Stem Cell Transplantation Treatment. Endocrinol Metab (Seoul) 2021; 36:1211-1218. [PMID: 34875817 PMCID: PMC8743595 DOI: 10.3803/enm.2021.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dickkopf-1 (DKK1) regulates bone formation by inhibiting canonical Wnt/β-catenin pathway signaling, and indirectly enhances osteoclastic activity by altering the expression ratio of receptor activator of nuclear factor-κB ligand (RANKL) relative to osteoprotegerin (OPG). However, it is difficult to explain continued bone loss after allogeneic stem cell transplantation (allo-SCT) in terms of changes in only RANKL and OPG. Few studies have evaluated changes in DKK1 after allo-SCT. METHODS We prospectively enrolled 36 patients with hematologic malignancies who were scheduled for allo-SCT treatment. Serum DKK1, OPG, and RANKL levels were measured before (baseline), and at 1, 4, 12, 24, and 48 weeks after allo-SCT treatment. Bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry before (baseline) and 24 and 48 weeks after allo-SCT treatment. RESULTS After allo-SCT treatment, the DKK1 level decreased rapidly, returned to baseline during the first 4 weeks, and remained elevated for 48 weeks (P<0.0001 for changes observed over time). The serum RANKL/OPG ratio peaked at 4 weeks and then declined (P<0.001 for changes observed over time). BMD decreased relative to the baseline at all timepoints during the study period, and the lumbar spine in female patients had the largest decline (-11.3%±1.6% relative to the baseline at 48 weeks, P<0.05). CONCLUSION Serum DKK1 levels rapidly decreased at 1 week and then continued to increase for 48 weeks; bone mass decreased for 48 weeks following engraftment in patients treated with allo-SCT, suggesting that DKK1-mediated inhibition of osteoblast differentiation plays a role in bone loss in patients undergoing allo-SCT.
Collapse
Affiliation(s)
- Eunhee Jang
- Division of Endocrinology, Department of Internal Medicine, Mizmedi Hospital, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Corresponding author: Moo Il Kang Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6006, Fax: +82-2-599-3589, E-mail:
| |
Collapse
|
3
|
Zannit HM, Brodt MD, Silva MJ. Proliferating osteoblasts are necessary for maximal bone anabolic response to loading in mice. FASEB J 2020; 34:12739-12750. [PMID: 32744762 DOI: 10.1096/fj.202000614r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Following mechanical loading, osteoblasts may arise via activation, differentiation, or proliferation to form bone. Our objective was to ablate proliferating osteoblast lineage cells in order to investigate the importance of these cells as a source for loading-induced bone formation. We utilized 3.6Col1a1-tk mice in which replicating osteoblast lineage cells can be ablated in an inducible manner using ganciclovir (GCV). Male and female mice were aged to 5- and 12-months and subjected to 5 days of tibial compression. "Experimental" mice were tk-positive, treated with GCV; "control" mice were either tk-negative treated with GCV, or tk-positive treated with PBS. We confirmed that experimental mice had a decrease in tk-positive cells that arose from proliferation. Next, we assessed bone formation after loading to low (7N) and high (11N) forces and observed that periosteal bone formation rate in experimental mice was reduced by approximately 70% for both forces. Remarkably, woven bone formation induced by high-force loading was blocked in experimental mice. Loading-induced lamellar bone formation was diminished but not prevented in experimental mice. We conclude that osteoblast proliferation induced by mechanical loading is a critical source of bone forming osteoblasts for maximal lamellar formation and is essential for woven bone formation.
Collapse
Affiliation(s)
- Heather M Zannit
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| |
Collapse
|
4
|
Hong AR, Kim K, Lee JY, Yang JY, Kim JH, Shin CS, Kim SW. Transformation of Mature Osteoblasts into Bone Lining Cells and RNA Sequencing-Based Transcriptome Profiling of Mouse Bone during Mechanical Unloading. Endocrinol Metab (Seoul) 2020; 35:456-469. [PMID: 32615730 PMCID: PMC7386115 DOI: 10.3803/enm.2020.35.2.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/03/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We investigated RNA sequencing-based transcriptome profiling and the transformation of mature osteoblasts into bone lining cells (BLCs) through a lineage tracing study to better understand the effect of mechanical unloading on bone loss. METHODS Dmp1-CreERt2(+):Rosa26R mice were injected with 1 mg of 4-hydroxy-tamoxifen three times a week starting at postnatal week 7, and subjected to a combination of botulinum toxin injection with left hindlimb tenotomy starting at postnatal week 8 to 10. The animals were euthanized at postnatal weeks 8, 9, 10, and 12. We quantified the number and thickness of X-gal(+) cells on the periosteum of the right and left femoral bones at each time point. RESULTS Two weeks after unloading, a significant decrease in the number and a subtle change in the thickness of X-gal(+) cells were observed in the left hindlimbs compared with the right hindlimbs. At 4 weeks after unloading, the decrease in the thickness was accelerated in the left hindlimbs, although the number of labeled cells was comparable. RNA sequencing analysis showed downregulation of 315 genes in the left hindlimbs at 2 and 4 weeks after unloading. Of these, Xirp2, AMPD1, Mettl11b, NEXN, CYP2E1, Bche, Ppp1r3c, Tceal7, and Gadl1 were upregulated during osteoblastogenic/osteocytic and myogenic differentiation in vitro. CONCLUSION These findings demonstrate that mechanical unloading can accelerate the transformation of mature osteoblasts into BLCs in the early stages of bone loss in vivo. Furthermore, some of the genes involved in this process may have a pleiotropic effect on both bone and muscle.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju,
Korea
| | - Kwangsoo Kim
- Seoul National University Hospital Biomedical Research Institute, Seoul,
Korea
| | - Ji Yeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
5
|
Zannit HM, Silva MJ. Proliferation and Activation of Osterix-Lineage Cells Contribute to Loading-Induced Periosteal Bone Formation in Mice. JBMR Plus 2019; 3:e10227. [PMID: 31768488 PMCID: PMC6874181 DOI: 10.1002/jbm4.10227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading stimulates bone formation. Bone-lining-cell activation and cell proliferation have been implicated in this process. However, the origin of osteoblasts that form bone following mechanical stimulation remains unknown. Our objective was to identity the contributions of activation, differentiation, and proliferation of osteoblast lineage cells to loading-induced periosteal bone formation. Tamoxifen-inducible Osx-Cre-ERT2;Ai9/TdTomato reporter mice (male and female) were aged to young adult (5 months) and middle age (12 months), and were administered tamoxifen for 5 consecutive days to label osterix-lineage cells. Following a 3-week clearance period, mice were subjected to five consecutive bouts of unilateral axial tibial compression. We first confirmed this protocol stimulated an increase in periosteal bone formation that was primarily lamellar apposition. Next, mice received 5-bromo-2'-deoxyuridine (BrdU) in their drinking water daily to label proliferating cells; calcein was given to label active mineralizing surfaces. Tibias were harvested after the fifth loading day and processed for frozen undecalcified histology. The middiaphyseal periosteal surface in the region of peak bone formation was analyzed. Histology revealed both nonloaded and loaded tibias were covered in osterix positive (Osx+) cells on the periosteal surface of both 5- and 12-month-old animals. There was a significant increase in the mineralizing surface (calcein+) covered with Osx+ cells in loaded versus control limbs. Furthermore, nearly all of the mineralizing surfaces (>95%) were lined with Osx+ cells. We also observed approximately 30% of Osx+ cells were also BrdU+, indicating they arose via proliferation. These results show that following mechanical loading, pre-existing cells of the Osx lineage cover the vast majority of surfaces where there is active loading-induced bone formation, and a portion of these cells proliferated in the 5-day loading period. We conclude the initial anabolic response after mechanical loading is based on the activation and proliferation of Osx lineage cells, not the differentiation of progenitor cells. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather M Zannit
- Department of Orthopaedic Surgery and Department of Biomedical EngineeringWashington UniversitySt LouisMO63110USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Department of Biomedical EngineeringWashington UniversitySt LouisMO63110USA
| |
Collapse
|
6
|
Cabahug-Zuckerman P, Liu C, Cai C, Mahaffey I, Norman SC, Cole W, Castillo AB. Site-Specific Load-Induced Expansion of Sca-1 +Prrx1 + and Sca-1 -Prrx1 + Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus 2019; 3:e10199. [PMID: 31667455 PMCID: PMC6808224 DOI: 10.1002/jbm4.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023] Open
Abstract
Aging is associated with significant bone loss and increased fracture risk, which has been attributed to a diminished response to anabolic mechanical loading. In adults, skeletal progenitors proliferate and differentiate into bone‐forming osteoblasts in response to increasing mechanical stimuli, though the effects of aging on this response are not well‐understood. Here we show that both adult and aged mice exhibit load‐induced periosteal bone formation, though the response is significantly attenuated with age. We also show that the acute response of adult bone to loading involves expansion of Sca‐1+Prrx1+ and Sca‐1−Prrx1+ cells in the periosteum. On the endosteal surface, loading enhances proliferation of both these cell populations, though the response is delayed by 2 days relative to the periosteal surface. In contrast to the periosteum and endosteum, the marrow does not exhibit increased proliferation of Sca‐1+Prrx1+ cells, but only of Sca‐1−Prrx1+ cells, underscoring fundamental differences in how the stem cell niche in distinct bone envelopes respond to mechanical stimuli. Notably, the proliferative response to loading is absent in aged bone even though there are similar baseline numbers of Prrx1 + cells in the periosteum and endosteum, suggesting that the proliferative capacity of progenitors is attenuated with age, and proliferation of the Sca‐1+Prrx1+ population is critical for load‐induced periosteal bone formation. These findings provide a basis for the development of novel therapeutics targeting these cell populations to enhance osteogenesis for overcoming age‐related bone loss. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pamela Cabahug-Zuckerman
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Chao Liu
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Cinyee Cai
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA
| | - Ian Mahaffey
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Stephanie C Norman
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Whitney Cole
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Alesha B Castillo
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| |
Collapse
|
7
|
Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, Fiane A, Vaage J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc 2017; 6:e006339. [PMID: 28912209 PMCID: PMC5634284 DOI: 10.1161/jaha.117.006339] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- ITMO University, St. Petersburg, Russia
| | - Anna Malashicheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Gareth Sullivan
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Maria Bogdanova
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
| | - Arnt Fiane
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- ITMO University, St. Petersburg, Russia
| |
Collapse
|
8
|
Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before Exercise Does Not Prevent Cortical Bone Adaptations to Training. Med Sci Sports Exerc 2017; 49:888-895. [PMID: 28079706 DOI: 10.1249/mss.0000000000001194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.
Collapse
Affiliation(s)
- Vanessa D Sherk
- 1Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Mechanical Engineering, University of Colorado Denver, Denver, CO; and 3Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res 2016; 22:95-106. [PMID: 27667570 PMCID: PMC5040224 DOI: 10.12659/msmbr.901142] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction of artificial bone matrices.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvar Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 2015; 21:1720-32. [PMID: 25752490 DOI: 10.1089/ten.tea.2014.0522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fracture nonunions represent one of many large bone defects where current treatment strategies fall short in restoring both form and function of the injured tissue. In this case, the use of a tissue-engineered scaffold for promoting bone healing offers an accessible and easy-to-manipulate environment for studying bone formation processes in vitro. We have previously shown that mechanical prestimulation using confined compression of differentiating osteoblasts results in an increase in mineralization formed in a 3D collagen-I scaffold. This study builds on this knowledge by evaluating the short and long-term effects of blocking gap junction-mediated intercellular communication among osteogenic cells on their effectiveness to mineralize collagen-I scaffolds in vitro, and in the presence and absence of mechanical stimulation. In this study, confined compression was applied in conjunction with octanol (a general communication blocker) or 18-α-glycerrhetinic acid (AGA, a specific gap junction blocker) using a modified FlexCell plate to collagen-I scaffolds seeded with murine embryonic stem cells stimulated toward osteoblast differentiation using beta-glycerol phosphate. The activity, presence, and expression of osteoblast cadherin, connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation. Fluorescence recovery after photobleaching, immunofluorescence, viability, histology assessments, and reverse-transcriptase polymerase chain reaction assessments revealed that inhibiting communication in this scaffold altered the lineage and function of differentiating osteoblasts. In particular, treatment with communication inhibitors caused reduced mineralization in the matrix, and dissociation between connexin-43 and integrin α5β1. This dissociation was not restored even after long-term recovery. Thus, in order for this scaffold to be considered as an alternative strategy for the repair of large bone defects, cell-cell contacts and cell-matrix interactions must remain intact for osteoblast differentiation and function to be preserved. This study shows that within this 3D scaffold, gap junctions are essential in osteoblast response to mechanical loading, and are essential structures in producing a significant amount and organization of mineralization in the matrix.
Collapse
Affiliation(s)
- Swathi Damaraju
- 1 McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Canada
| | | | | | | |
Collapse
|
11
|
Shirazi-Fard Y, Metzger CE, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Moderate intensity resistive exercise improves metaphyseal cancellous bone recovery following an initial disuse period, but does not mitigate decrements during a subsequent disuse period in adult rats. Bone 2014; 66:296-305. [PMID: 24929241 DOI: 10.1016/j.bone.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Spaceflight provides a unique environment for skeletal tissue causing decrements in structural and densitometric properties of bone. Previously, we used the adult hindlimb unloaded (HU) rat model to show that previous exposure to HU had minimal effects on bone structure after a second HU exposure followed by recovery. Furthermore, we found that the decrements during second HU exposure were milder than the initial HU cycle. In this study, we used a moderate intensity resistance exercise protocol as an anabolic stimulus during recovery to test the hypothesis that resistance exercise following an exposure to HU will significantly enhance recovery of densitometric, structural, and, more importantly, mechanical properties of trabecular and cortical bone. We also hypothesized that resistance exercise during recovery, and prior to the second unloading period, will mitigate the losses during the second exposure. The hypothesis that exercise during recovery following hindlimb unloading will improve bone quality was supported by our data, as total BMC, total vBMD, and cancellous bone formation at the proximal tibia metaphysis increased significantly during exercise period, and total BMC/vBMD exceeded age-matched control and non-exercised values significantly by the end of recovery. However, our results did not support the hypothesis that resistance exercise prior to a subsequent unloading period will mitigate the detrimental effects of the second exposure, as the losses during the second exposure in total BMC, total vBMD, and cortical area at the proximal tibia metaphysis for the exercised animals were similar to those of the non-exercised group. Therefore, exercise did not mitigate effects of the second HU exposure in terms of pre-to-post HU changes in these variables, but it did produce beneficial effects in a broader sense.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Corinne E Metzger
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Andrea T Kwaczala
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Harry A Hogan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
12
|
Lindberg G, Banks-Sills L, Ståhle P, Svensson I. A two-dimensional model for stress driven diffusion in bone tissue. Comput Methods Biomech Biomed Engin 2013; 18:457-67. [PMID: 23865643 DOI: 10.1080/10255842.2013.807507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The growth and resorption of bone are governed by interaction between several cells such as bone-forming osteoblasts, osteocytes, lining cells and bone-resorbing osteoclasts. The cells considered in this study reside in the periosteum. Furthermore, they are believed to be activated by certain substances to initiate bone growth. This study focuses on the role that stress driven diffusion plays in the transport of these substances from the medullary cavity to the periosteum. Calculations of stress driven diffusion are performed under steady state conditions using a finite element method with the concentration of nutrients in the cambium layer of the periosteum obtained for different choices of load frequencies. The results are compared with experimental findings, suggesting that increased bone growth occurs in the neighbourhood of relatively high nutrient concentration.
Collapse
Affiliation(s)
- Gustav Lindberg
- a Division of Solid Mechanics, Lund Institute of Technology, Lund University , SE-221 00 Lund , Sweden
| | | | | | | |
Collapse
|
13
|
Vivanco J, Garcia S, Ploeg HL, Alvarez G, Cullen D, Smith EL. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc Inst Mech Eng H 2013; 227:904-12. [PMID: 23674578 DOI: 10.1177/0954411913486855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although it is widely known that bone tissue responds to mechanical stimuli, the underlying biological control is still not completely understood. The purpose of this study was to validate required methods necessary to maintain active osteocytes and minimize bone tissue injury in an ex vivo three-dimensional model that could mimic in vivo cellular function. The response of 22 bovine trabecular bone cores to uniaxial compressive load was investigated by using the ZETOS bone loading and bioreactor system while perfused with culture medium for 21 days. Two groups were formed, the "treatment" group (n = 12) was stimulated with a physiological compressive strain (4000 µε) in the form of a "jump" wave, while the "control" group (n = 10) was loaded only during three measurements for apparent elastic modulus on days 3, 10, and 21. At the end of the experiment, apoptosis and active osteocytes were quantified with histological analysis, and bone formation was identified by means of the calcium-binding dye, calcein. It was demonstrated that the treatment group increased the elastic modulus by 61%, whereas the control group increased by 28% (p<0.05). Of the total osteocytes observed at the end of 21 days, 1.7% (±0.3%) stained positive for apoptosis in the loaded group, whereas 2.7% (±0.4%) stained positive in the control group. Apoptosis in the center of the bone cores of both groups at the end of 21 days was similar to that observed in vivo. Therefore, the three-dimensional model used in this research permitted the investigation of physiological responses to mechanical loads on morphology adaptation of trabecular bone in a controlled defined load and chemical environment.
Collapse
Affiliation(s)
- Juan Vivanco
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The effects of BPs on bone formation during mechanical loading are still unknown. In this study, we evaluated the effect of minodronate on the cortical bone response to mechanical loading applied using a 4-point bending device. We used six-month old female Wistar rats and randomized into five groups (N=10/group): Vehicle administration (VEH), low dose minodronate administration (MIN-L, 0.01 mg/kg BW), middle dose minodronate administration (MIN-M, 0.1mg/kg BW), high-dose minodronate administration (MIN-H 1mg/kg BW), and very high-dose minodronate administration (MIN-VH, 10mg/kg BW). Minodronate or vehicle was administered orally using the feeding needle at a dosage 3 times/week for 3 weeks. Loads on the right tibia at 38 N for 36 cycles at 2 Hz were applied in vivo by 4-point bending on the same day for 3 weeks. After calcein double labeling the rats were sacrificed and tibial cross sections were prepared from the region with maximal bending at the central diaphysis. Histomorphometry was performed at the entire periosteal and endocortical surface of the tibiae, dividing the periosteum into lateral and medial surfaces. The formation surface was reduced significantly in MIN-H and MIN-VH groups at the medial surface, and in MIN-VH group at the endocortical surface of the loaded tibia (p<0.01 vs. VEH). The mineral appositional rate was reduced significantly in MIN-H and MIN-VH groups at the endocortical surface of the loaded tibia (p<0.01 vs. VEH). The bone formation rate was significantly reduced in MIN-H group at the medial surface, and in MIN-H and MIN-VH groups at the endocortical surface of the loaded tibia (p<0.01 vs. VEH). However, no significant differences were observed in any parameters between the VEH group and either the MIN-L or MIN-M groups for both the loaded and non-loaded tibiae. Based on previous preventive studies in OVX rats, the optimal dose of minodronate for the treatment of osteoporosis would be 0.03 mg/kg (0.21 mg/kg/week). Therefore, we used 0.1mg/kg of minodronate 3 times/week (0.30 mg/kg/week) that was close to 0.21 mg/kg/week. In conclusion, minodronate does not reduce the cortical bone response to mechanical loading at the optimal dose for the treatment of osteoporosis in rat model.
Collapse
Affiliation(s)
- Keita Nagira
- Department of Orthopedic Surgery, Tottori University, Faculty of Medicine, Yonago, Japan.
| | | | | | | |
Collapse
|
15
|
Kim SW, Pajevic PD, Selig M, Barry KJ, Yang JY, Shin CS, Baek WY, Kim JE, Kronenberg HM. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res 2012; 27:2075-84. [PMID: 22623172 PMCID: PMC3529414 DOI: 10.1002/jbmr.1665] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system. Dmp1-CreERt2 mice were crossed with ROSA26R reporter mice to render targeted mature osteoblasts and their descendents, lining cells and osteocytes, detectable by 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) staining. Dmp1-CreERt2(+):ROSA26R mice were injected with 0.25 mg 4-OH-tamoxifen (4-OHTam) on postnatal days 3, 5, 7, 14, and 21. The animals were euthanized on postnatal day 23, 33, or 43 (2, 12, or 22 days after the last 4-OHTam injection). On day 43, mice were challenged with a subcutaneous injection of human PTH (1-34, 80 µg/kg) or vehicle once daily for 3 days. By 22 days after the last 4-OHTam injection, most X-gal (+) cells on the periosteal surfaces of the calvaria and the tibia were flat. Moreover, bone formation rate and collagen I(α1) mRNA expression were decreased at day 43 compared to day 23. After 3 days of PTH injections, the thickness of X-gal (+) cells increased, as did their expression of osteocalcin and collagen I(α1) mRNA. Electron microscopy revealed X-gal-associated chromogen particles in thin cells prior to PTH administration and in cuboidal cells following PTH administration. These data support the hypothesis that intermittent PTH treatment can increase osteoblast number by converting lining cells to mature osteoblasts in vivo.
Collapse
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Boramae Hospital, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cassino TR, Drowley L, Okada M, Beckman SA, Keller B, Tobita K, Leduc PR, Huard J. Mechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: the role of loading history. Tissue Eng Part A 2012; 18:1101-8. [PMID: 22280442 DOI: 10.1089/ten.tea.2011.0285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stem cell therapy for tissue repair is a rapidly evolving field and the factors that dictate the physiological responsiveness of stem cells remain under intense investigation. In this study we hypothesized that the mechanical loading history of muscle-derived stem cells (MDSCs) would significantly impact MDSC survival, host tissue angiogenesis, and myocardial function after MDSC transplantation into acutely infarcted myocardium. Mice with acute myocardial infarction by permanent left coronary artery ligation were injected with either nonstimulated (NS) or mechanically stimulated (MS) MDSCs. Mechanical stimulation consisted of stretching the cells with equibiaxial stretch with a magnitude of 10% and frequency of 0.5 Hz. MS cell-transplanted hearts showed improved cardiac contractility, increased numbers of host CD31+ cells, and decreased fibrosis, in the peri-infarct region, compared to the hearts treated with NS MDSCs. MS MDSCs displayed higher vascular endothelial growth factor expression than NS cells in vitro. These findings highlight an important role for cyclic mechanical loading preconditioning of donor MDSCs in optimizing MDSC transplantation for myocardial repair.
Collapse
Affiliation(s)
- Theresa R Cassino
- Department of Orthopaedic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rosenberg N, Levy M, Francis M. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. Cytotechnology 2011; 39:125-30. [PMID: 19003304 DOI: 10.1023/a:1023925230651] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reliable and reproducible experimental methods for studying enhancement of osteoblast proliferation and metabolic activity in vitro provide invaluable tools for the research of biochemical processes involved in bone turnover in vivo. Some of the current methods used for this purpose are based on the ability of the osteoblasts to react metabolically to mechanical stimulation. These methods are based on the hypothesis that intracellular metabolic pathways could be influenced by the excitation of cytoskeletal components by mechanical cell deformation. Based on the same assumptions we developed a new experimental approach of biomechanical stimulation of cultured osteoblast-like cells by vibration. This method is based on the use of a specially designed vibration device that consists of an electric shaker with horizontally mounted well plate containing cell cultures. We used a first passage explant outgrowth of human osteoblast-like cell cultures, originating from samples of cancelous bone, collected from femoral necks of six donors during surgical arthroplasties of osteoarthritic hips. Well plates with replicates of cultured cells were exposed to a sine shaped vibration protocol in a frequency range of 20-60 Hz with displacement amplitude of 25 (+/-5) mum. We found that vibration at a distinct set of mechanical parameters of 20 Hz frequency and peak to peak acceleration of 0.5 +/- 0.1 m/sec(2) is optimal for cell proliferation, and at 60 Hz frequency with peak to peak acceleration of 1.3 +/- 0.1 m/sec(2) for metabolic activity. The presented easily reproducible experimental model should improve and simplify further research on the interactions between mechanical stimuli and intracellular biochemical pathways in osteoblasts.
Collapse
Affiliation(s)
- N Rosenberg
- Nuffield Department of Orthopaedic Surgery, University of Oxford, UK,
| | | | | |
Collapse
|
18
|
Lespessailles E, Jaffré C, Rochefort GY, Dolléans E, Benhamou CL, Courteix D. Exercise and Zoledronic Acid on Lipid Profile and Bone Remodeling in Ovariectomized Rats: a Paradoxical Negative Association? Lipids 2010; 45:337-44. [DOI: 10.1007/s11745-010-3399-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 02/11/2010] [Indexed: 11/25/2022]
|
19
|
Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res 2008; 23:879-86. [PMID: 18282131 PMCID: PMC2677086 DOI: 10.1359/jbmr.080222] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION In vitro data suggest that gap junctional intercellular communication mediated by connexin43 (Cx43) plays an important role in bone cell response to mechanical stimulation. We tested this hypothesis in vivo in a model of genetic deficiency of the Cx43 gene (Gja1). MATERIALS AND METHODS Four-month-old female mice with a conditional Gja1 ablation in osteoblasts (ColCre;Gja1(-/flox)), as well as wildtype (Gja1(+/flox)) and heterozygous equivalent (Gja1(-/flox)) littermates (eight per genotype), were subjected to a three-point bending protocol for 5 d/wk for 2 wk. Microstructural parameters and dynamic indices of bone formation were estimated on sections of loaded and control contralateral tibias. RESULTS ColCre;Gja1(-/flox) mice had significantly thinner cortices, but larger marrow area and total cross-sectional area in the tibial diaphysis, compared with the other groups. The ColCre;Gja1(-/flox) mice needed approximately 40% more force to generate the required endocortical strain. In Gja1(+/flox) mice, the loading regimen produced abundant double calcein labels at the endocortical surface, whereas predominantly single labels were seen in ColCre;Gja1(-/flox) mice. Accordingly, mineral apposition rate and bone formation rate were significantly lower (54.8% and 50.2%, respectively) in ColCre;Gja1(-/flox) relative to Gja1(+/flox) mice. Intermediate values were found in Gja1(-/flox) mice. CONCLUSIONS Gja deficiency results in thinner but larger tibial diaphyses, resembling changes occurring with aging, and it attenuates the anabolic response to in vivo mechanical loading. Thus, Cx43 plays an instrumental role in this adaptive response to physical stimuli.
Collapse
|
20
|
|
21
|
Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res 2008; 23:741-9. [PMID: 18433305 DOI: 10.1359/jbmr.080102] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Stress fractures (SFx) are one of the most common and debilitating overuse injuries seen in military recruits, and they are also problematic for nonmilitary athletic populations. The goal of this randomized double-blind, placebo-controlled study was to determine whether a calcium and vitamin D intervention could reduce the incidence of SFx in female recruits during basic training. MATERIALS AND METHODS We recruited 5201 female Navy recruit volunteers and randomized them to 2000 mg calcium and 800 IU vitamin D/d or placebo. SFx were ascertained when recruits reported to the Great Lakes clinic with symptoms. All SFx were confirmed with radiography or technetium scan according to the usual Navy protocol. RESULTS A total of 309 subjects were diagnosed with a SFx resulting in an incidence of 5.9% per 8 wk. Using intention-to-treat analysis by including all enrolled subjects, we found that the calcium and vitamin D group had a 20% lower incidence of SFx than the control group (5.3% versus 6.6%, respectively, p = 0.0026 for Fisher's exact test). The per protocol analysis, including only the 3700 recruits who completed the study, found a 21% lower incidence of fractures in the supplemented versus the control group (6.8% versus 8.6%, respectively, p = 0.02 for Fisher's exact test). CONCLUSIONS Generalizing the findings to the population of 14,416 women who entered basic training at the Great Lakes during the 24 mo of recruitment, calcium and vitamin D supplementation for the entire cohort would have prevented approximately 187 persons from fracturing. Such a decrease in SFx would be associated with a significant decrease in morbidity and financial costs.
Collapse
|
22
|
Friedl G, Turner RT, Evans GL, Dobnig H. Intermittent parathyroid hormone (PTH) treatment and age-dependent effects on rat cancellous bone and mineral metabolism. J Orthop Res 2007; 25:1454-64. [PMID: 17557320 DOI: 10.1002/jor.20433] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, intermittent PTH treatment has been investigated extensively for its efficacy in preventing osteoporotic fractures and to improve fracture healing and implant fixation. Although these tasks concern patients of all ages, very little is known about whether aging impacts the bone anabolic response to PTH. Female Sprague-Dawley rats of 1, 3, and 13 months of age were either treated by hPTH-(1-34) or by vehicle solution (CTR) for 1 week. As main outcome measures, we determined the effects on static and dynamic histomorphometry of cancellous bone. In addition, we measured gene expression in femur and serum parameters reflecting bone turnover and mineral metabolism. There was a profound decrease in bone formation rate (BFR) with aging in CTR rats, whereas PTH treatment resulted in a significant relative 1.5-, 3-, and 4.7-fold increase in BFR, without altering indices of bone resorption. Aging decreased and PTH increased mRNA levels for bone matrix proteins and growth factors in a gene-specific manner. In younger animals, PTH-induced a marked stimulation in the mineral apposition rate with no effect on osteoblast number, whereas the latter was increased in older animals (1.0-, 1.7-, and 3.1-fold). Treatment with PTH in young rats led to a significant increase in trabecular number (1.6-2.6/mm, p < 0.05), whereas older rats demonstrated increases in trabecular thickness only (52.8-77.8 microm, p < 0.001). Although PTH increased bone formation at all ages, we found significant age-related differences in the cellular and molecular mechanisms involved in the bone anabolic response to the hormone.
Collapse
Affiliation(s)
- Gerald Friedl
- Department of Orthopedics and Orthopedic Surgery, Medical University of Graz, A-8036 Graz, Austria
| | | | | | | |
Collapse
|
23
|
Carpenter RD, Carter DR. The mechanobiological effects of periosteal surface loads. Biomech Model Mechanobiol 2007; 7:227-42. [PMID: 17487517 DOI: 10.1007/s10237-007-0087-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
We have developed an improved mechanobiological model of bone morphogenesis and functional adaptation that includes the influences of periosteum tension and pressure on bone formation and resorption. Previous models assumed that periosteal and endosteal bone deposition and resorption rates are governed only by the local intracortical daily stress or strain stimulus caused by cyclic loading. The new model incorporates experimental findings that pressures on periosteal surfaces can impede bone formation or induce bone resorption, whereas periosteal tensile strains perpendicular to bone surfaces can impede bone resorption or induce bone formation. We propose that these effects can produce flattened or concave bone surfaces in regions of periosteal pressure and bone ridges in regions of periosteal tension. The model was implemented with computer simulations to illustrate the role of adjacent muscles on the development of the triangular cross-sectional geometry of the rat tibia. The results suggest that intracortical stresses dictate bone size, whereas periosteal pressures may work in combination with intracortical stresses and other mechanobiological factors in the development of local bone cross-sectional shapes.
Collapse
Affiliation(s)
- R Dana Carpenter
- Bone and Joint Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
24
|
Gregory LS, Forwood MR. Cyclooxygenase-2 inhibition delays the attainment of peak woven bone formation following four-point bending in the rat. Calcif Tissue Int 2007; 80:176-83. [PMID: 17334881 DOI: 10.1007/s00223-006-0170-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 11/07/2006] [Indexed: 11/29/2022]
Abstract
Fracture healing is retarded in the presence of cyclooxygenase-2 (COX-2) inhibitors, demonstrating an important role of COX-2 in trauma-induced woven bone adaptation. The aim of this experiment was to determine the influence of COX-2 inhibition on the remodeling and consolidation of nontraumatic woven bone produced by mechanical loading. A periosteal woven bone callus was initiated in the right tibia of female Wistar rats following a single bout of four-point bending, applied as a haversine wave for 300 cycles at a frequency of 2 Hz and a magnitude of 65 N. Daily injections of vehicle (VEH, polyethylene glycol) or the COX-2 inhibitor 5,5-dimethyl-3-3(3 fluorophenyl)-4-(4-methylsulfonal)phenyl-2(5H)-furanone (DFU, 2.0 mg . kg(-1) and 0.02 mg . kg(-1) i.p.), commenced 7 days postloading, and tibiae were examined 2, 3, 4, and 5 weeks postloading. Tibiae were dissected, embedded in polymethylmethacrylate, and sectioned for histomorphometric analysis of periosteal woven bone. No significant difference in peak woven bone area was observed between DFU-treated and VEH rats. However, treatment with DFU resulted in a temporal defect in woven bone formation, where the achievement of peak woven bone area was delayed by 1 week. Woven bone remodeling was observed in DFU-treated rats at 21 days postloading, demonstrating that remodeling of the periosteal callus is not prevented in the presence of a COX-2 inhibitor in the rat. We conclude that COX-2 inhibition does not significantly disrupt the mechanism of woven bone remodeling but alters its timing.
Collapse
Affiliation(s)
- L S Gregory
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, The University of Queensland, Brisbane, Qld, 4072, Australia.
| | | |
Collapse
|
25
|
|
26
|
Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 2006; 207:454-60. [PMID: 16419041 DOI: 10.1002/jcp.20581] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical strain inhibits osteoclastogenesis by regulating osteoblast functions: We have shown that strain inhibits receptor activator of NF-kappaB ligand (RANKL) expression and increases endothelial nitric oxide synthase (eNOS) and nitric oxide levels through ERK1/2 signaling in primary bone stromal cells. The primary stromal culture system, while contributing greatly to understanding of how the microenvironment regulates bone remodeling is limited in use for biochemical assays and studies of other osteoprogenitor cell responses to mechanical strain: Stromal cells proliferate poorly and lose aspects of the strain response after a relatively short time in culture. In this study, we used the established mouse osteoblast cell line, conditionally immortalized murine calvarial (CIMC-4), harvested from mouse calvariae conditionally immortalized by insertion of the gene coding for a temperature-sensitive mutant of SV40 large T antigen (TAg) and support osteoclastogenesis. Mechanical strain (0.5-2%, 10 cycles per min, equibiaxial) caused magnitude-dependent decreases in RANKL expression to less than 50% those of unstrained cultures. Overnight strains of 2% also increased osterix (OSX) and RUNX2 expression by nearly twofold as measured by RT-PCR. Importantly, the ERK1/2 inhibitor, PD98059, completely abrogated the strain effects bringing RANKL, OSX, and RUNX2 gene expression completely back to control levels. These data indicate that the strain effects on CIMC-4 cells require activation of ERK1/2 pathway. Therefore, the CIMC-4 cell line is a useful alternative in vitro model which effectively recapitulates aspects of the primary stromal cells and adds an extended capacity to study osteoblast control of bone remodeling in a mechanically active environment.
Collapse
Affiliation(s)
- Xian Fan
- Department of Medicine, Emory University School of Medicine and the Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006; 281:23698-711. [PMID: 16790443 DOI: 10.1074/jbc.m601000200] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.
Collapse
Affiliation(s)
- Kimihiko Sawakami
- Department of Orthopedic Surgery, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hankenson KD, Ausk BJ, Bain SD, Bornstein P, Gross TS, Srinivasan S. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading. Bone 2006; 38:310-6. [PMID: 16290255 DOI: 10.1016/j.bone.2005.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 08/28/2005] [Accepted: 08/31/2005] [Indexed: 11/28/2022]
Abstract
Thrombospondin 2 (TSP2) is an extracellular matrix (ECM) protein localized to bone. Since mice with a targeted disruption of the TSP2 gene (TSP2-null) have increased bone formation, we hypothesized that mice lacking TSP2 would show an enhanced osteogenic response to mechanical loading. We addressed our hypothesis by subjecting wild-type (WT) and TSP2-null mice to mechanical loading using the non-invasive murine tibia loading device, and statistical comparisons were made between loaded and unloaded bones within genotype, between genotypes, and between the periosteal and endocortical surfaces within genotype. Right tibiae of WT and TSP2-null mice received 5 days of a low-magnitude loading protocol. This low-magnitude loading (inducing approximately 900 and 500 muepsilon at periosteal and endocortical surfaces of WT bones, respectively) affected neither periosteal nor endocortical bone formation rate (BFR/BS) when comparing loaded to intact bones in either WT or TSP2-null mice, nor did it result in any significant differences between WT and TSP2-null. As well, there was no difference between loaded endocortical and periosteal surfaces in WT mice; however, endocortical BFR/BS in TSP2-null loaded tibia was significantly elevated relative to the periosteal BFR/BS-despite peak periosteal strains being significantly greater than endocortical strains in TSP2-null mice (690 versus 460 muepsilon). To confirm this counterintuitive surface-specific response in TSP2-null mice and to induce significant periosteal bone formation, osteogenic potency of the loading protocol was amplified by doubling the number of loading bouts (10 loading days) and loading magnitude (1 Hz, resulting in 1400 and 900 muepsilon peak strain at the periosteal and endocortical surfaces, respectively). Under load, both WT and TSP2-null mice showed significantly increased periosteal mineralizing surface (by nearly three-fold and five-fold, respectively), but mineral apposition rate (MAR) was not statistically changed. The increased MS/BS resulted in a five-fold increase in WT periosteal BFR/BS, but the TSP2-null periosteal BFR/BS was unchanged. Furthermore, this increase in WT loaded periosteal BFR/BS was statistically greater than the WT endocortical BFR/BS. At the endocortical surface of WT mice, loading did not significantly increase bone formation parameters (versus intact). In contrast, at the endocortical surface of TSP2-null mice, loading induced a significant two-fold increase in BFR/BS (versus intact), that was also significantly greater than the endocortical BFR/BS of loaded WT mice. Thus, exogenous loading of TSP2-null mice resulted in highly variable responses that did not reflect the induced strains at the periosteal and endocortical surfaces. While in WT mice, loading resulted in increased periosteal BFR/BS that was greater than the endocortical BFR/BS, in TSP2-null mice loading resulted in endocortical (not periosteal) BFR/BS that was elevated. This reversal in envelope-specific bone formation in TSP2-null mice occurred despite periosteal strains being significantly greater than endocortical (1290 versus 775 muepsilon) and strain distributions being similar to that of WT. These results show that the disruption of a single gene can lead to a reversal in normal pattern of load induced bone formation, and more specifically, that the functional interaction of TSP2 with mechanical loading is highly contextual and specific to the cortical bone envelope examined.
Collapse
Affiliation(s)
- Kurt D Hankenson
- Department of Orthopaedic Surgery, and Unit for Laboratory Animal Medicine, University of Michigan, G161 400 N. Ingalls Bldg., Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, Marx DB, Cullen DM, Reinhardt RA. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol 2006; 76:1861-70. [PMID: 16274305 PMCID: PMC1350642 DOI: 10.1902/jop.2005.76.11.1861] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Simvastatin has been shown to increase bone growth when applied topically to murine bone; however, it causes considerable soft tissue inflammation at high doses (2.2 mg), making future clinical use problematic. This study evaluated the effect of lower simvastatin doses and cyclooxygenase (COX) synthase inhibitors on tissue inflammation and bone growth in rats and gene expression in mice. METHODS Adult female rats were untreated or treated with a single dose of 0.1, 0.5, 1.0, 1.5, or 2.2 mg simvastatin in methylcellulose gel in a polylactic acid membrane (SIM) on the lateral aspect of the mandible. The contralateral mandible side was implanted with methylcellulose gel/polylactic acid membrane alone (GEL), and five rats in each dose pairing were evaluated histomorphometrically after 3, 7, and 24 days. Subsequent rats were similarly treated with 0.5 mg simvastatin (optimal dose) and daily intraperitoneal injections of COX-2 inhibitor (NS-398; 1 mg/kg x 7 days; N = 16), general COX inhibitor (indomethacin; 1 mg/kg x 7 days; N = 16), or no inhibitor (N = 10) and evaluated histomorphometrically after 7 or 24 days by analysis of variance (ANOVA). Gene arrays were also used to evaluate osteogenic gene expression from 0.5 mg simvastatin in murine calvaria (N = 12). RESULTS There was a 45% increase in bone area with 0.5 mg simvastatin versus gel control (P <0.001; similar to the 2.2-mg dose), and clinical swelling was reduced compared to the high simvastatin dose (P <0.05). The 0.1-mg simvastatin dose failed to stimulate significant bone growth. NS-398 and indomethacin reduced inflammation and bone growth. Simvastatin significantly upregulated procollagen, fibronectin, and matrix metalloproteinase-13 genes. CONCLUSION Reducing the simvastatin dose from 2.2 to 0.5 mg reduced inflammation to a more clinically acceptable level without sacrificing bone-growth potential, but COX-associated inflammation appears to be necessary for in vivo bone growth.
Collapse
Affiliation(s)
- David Stein
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583-0740, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Terrier A, Miyagaki J, Fujie H, Hayashi K, Rakotomanana L. Delay of intracortical bone remodelling following a stress change: a theoretical and experimental study. Clin Biomech (Bristol, Avon) 2005; 20:998-1006. [PMID: 16095782 DOI: 10.1016/j.clinbiomech.2005.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/29/2005] [Accepted: 06/15/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND A theoretical model and an experimental setup were specifically designed to identify and determine the delay of the cortical bone response (restricted to mineralization and demineralization) to a stress change. METHODS The in vivo experiment considered two groups of rats: a running group and a control sedentary group. The running group rats were compelled to a running activity for 15 weeks, followed by a sedentary activity for 15 weeks. Bone density was derived from hardness measurements. The parameters of the remodelling theory, including the response delay and the remodelling rates, were determined from these experimental measurements. FINDINGS Bone density increased significantly during the activity period, and decreased rapidly when rats returned to sedentary state. The identification of the model's parameters produced evolution curves that were within the limits of the standard deviation of the experimental data. The densification rate was lower than the resorption rate, and the densification delay was greater than bone resorption delay. INTERPRETATION The delays determined with this macroscopic model are related to response delays due to biological internal processes in bone.
Collapse
Affiliation(s)
- Alexandre Terrier
- Laboratoire de Recherche en Orthopédie, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Hagino H, Kuraoka M, Kameyama Y, Okano T, Teshima R. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone 2005; 36:444-53. [PMID: 15777678 DOI: 10.1016/j.bone.2004.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/06/2004] [Accepted: 12/15/2004] [Indexed: 11/26/2022]
Abstract
The influence of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the bone response to mechanical loading was evaluated. Six-month-old female Wistar rats were used and assigned to three groups (n = 12/group): Vehicle administration (EP4-V), low-dose ONO-4819 administration (EP4-L, 3 microg/kg BW), and high-dose ONO-4819 administration (EP4-H, 30 microg/kg BW). ONO-4819 was subcutaneously injected in the back twice a day for 3 weeks. Loads on the right tibia at 39.4 N for 36 cycles at 2 Hz were applied in vivo by 4-point bending every other day for 3 weeks. Whole-body bone mineral content showed a significant difference between EP4-V and EP4-H (P < 0.05). Bone mineral density (BMD) of the total and regional tibia (the region with maximal bending at the central diaphysis) was higher in EP4-H than EP4-V, showing a significant effect of loading (P < 0.001) and ONO-4819 (P < 0.05). BMD of the total femur was higher in EP4-H than EP4-V (P < 0.01) and that of the distal femur was higher in EP4-H than EP4-V (P < 0.001). Histomorphometry of the cortical bone showed that loading increased formation surface (FS/BS), mineral appositional rate (MAR), and bone formation rate (BFR/BS) significantly at the lateral periosteal surface (P < 0.001); however, the effect of ONO-4819 was not significant. At the medial periosteal surface, loading increased the three parameters (P < 0.001) and ONO-4819 increased FS/BS (P < 0.001) and MAR (P < 0.05) significantly. At the endocortical surface, the effects of both loading and ONO-4819 were significant on all three parameters (for loading; FS/BS P < 0.01, MAR P < 0.05, BFR/BS P < 0.03, for ONO-4819 all P < 0.001). It was concluded that ONO-4819 increased cortical bone formation in rats and there was an additive effect on the bone response to external loading by 4-point bending.
Collapse
Affiliation(s)
- H Hagino
- Rehabilitation Division, Tottori University Hospital, Yonago, Tottori 683-8504, Japan.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Szulc P, Garnero P, Marchand F, Duboeuf F, Delmas PD. Biochemical markers of bone formation reflect endosteal bone loss in elderly men--MINOS study. Bone 2005; 36:13-21. [PMID: 15663998 DOI: 10.1016/j.bone.2004.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 08/09/2004] [Accepted: 09/10/2004] [Indexed: 11/15/2022]
Abstract
In the skeleton of elderly men, two opposite activities occur: bone loss at the endosteal envelope, which increases bone fragility, and periosteal apposition, which improves bending strength of bone. Both may contribute to serum bone formation markers although they have an opposite effect on bone fragility. The aim of this study was to determine if circulating bone formation markers reflect periosteal bone formation and endosteal bone remodelling in 640 men aged 55-85 years belonging to the MINOS cohort. We measured biochemical markers of bone formation (osteocalcin, bone alkaline phosphatase, N-terminal extension propeptide of type I collagen) and bone resorption (urinary and serum beta-isomerised C-terminal telopeptide of collagen type I, total and free deoxypyridinoline). Parameters of bone size (cross-sectional surface of third lumbar vertebral body measured by X-ray, projected areas of total hip, femoral neck, radius and ulna measured by dual-energy X-ray absorptiometry) increased with age (r = 0.20-0.32, P < 0.0001). In contrast, parameters related to bone loss (areal bone mineral density [aBMD], volumetric bone mineral density [vBMD] and cortical thickness) and determined mainly by bone resorption, decreased with ageing (r = -0.14 to -0.23, P < 0.005-0.0001). Men in the highest quartile of bone resorption markers had lower aBMD (3.8-10.2%, P < 0.05-0.0001), lower vBMD (3.9-13.0%, P < 0.05-0.0001), and lower cortical thickness (1.5-9.6%, P < 0.05-0.0001) than men in the lowest quartile. Markers of bone resorption were not significantly associated with estimates of bone size at any skeletal site. Markers of bone formation were not associated with estimates of periosteal formation after adjustment for covariates. In contrast, men in the highest quartile of the bone formation markers had significantly lower aBMD (4.0-11.7%, P < 0.05-0.0001), lower vBMD (4.2-16.3, P < 0.05-0.0001) and lower cortical thickness (4.0-7.4%, P < 0.05-0.0001) than men in the lowest quartile. In summary, serum levels of bone formation markers are negatively correlated with the estimates of endosteal bone loss. In contrast, they disclose no association with parameters reflecting periosteal apposition. Thus, in elderly men, bone formation markers reflect endosteal bone remodelling, probably because of the coupling between resorption and formation activities. In contrast, they do not reflect the periosteal bone formation, probably because the periosteal surface is smaller and has a slower remodelling rate than the endosteal surface.
Collapse
Affiliation(s)
- P Szulc
- INSERM 403 Research Unit, Hôpital Edouard Herriot, Claude Bernard University, Lyon, France
| | | | | | | | | |
Collapse
|
34
|
Abstract
Bone undergoes a constant process of remodeling in which mass is retained or lost in response to the relative activity of osteoblasts and osteoclasts. Weight-bearing exercise-which is critical for retaining skeletal integrity-promotes osteoblast function, whereas a lack of mechanical stimulation, as seen during spaceflight or prolonged bed rest, can lead to osteoporosis. Thus, understanding mechanotransduction at the cellular level is key to understanding basic bone biology and devising new treatments for osteoporosis. Various mechanical stimuli have been studied as in vitro model systems and have been shown to act through numerous signaling pathways to promote osteoblast activity. Here, we examine the various types of stress and the sequential response of transduction pathways that result in changes in gene expression and the ensuing proliferation of osteoblasts.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- Laboratory of Cell Growth, Department of Medicine, Veterans Affairs Medical Center, University of California, and Northern California Institute for Research and Education, San Francisco, CA 94121, USA.
| |
Collapse
|
35
|
Rabie ABM, Wong L, Hägg U. Correlation of replicating cells and osteogenesis in the glenoid fossa during stepwise advancement. Am J Orthod Dentofacial Orthop 2003. [PMID: 12750670 DOI: 10.1016/s0889-5406(02)57033-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The purposes of this study were to quantify the number of replicating mesenchymal cells and to correlate it with the amount of new bone formed in the glenoid fossa during stepwise advancement. We randomly divided 250 female Sprague-Dawley rats, 35 days old, into 10 control groups (n = 5) and 20 experimental groups (n = 10). Fifty rats from the stepwise experimental group received initial advancement of 2 mm and another 1.5 mm of advancement on day 30 by the addition of veeners. On days 3, 7, 14, 21, 30, 33, 37, 44, 51, and 60, the rats were killed. One hour before that, the rats were injected with bromodeoxyuridine (BrdU) intravenously. We cut 7-microm tissue sections through the glenoid fossa sagittally and stained them with anti-BrdU antibody to evaluate the number of replicating mesenchymal cells. During the first advancement, the number of replicating cells in the posterior region of the glenoid fossa showed a significant increase compared with natural growth, but a significant decrease compared with 1-step advancement. On the second advancement, however, an increase in the number of replicating cells was observed on day 37 with a subsequent and significant increase in bone formation on day 44. Mandibular advancement conducted in a stepwise fashion increases the number of replicating mesenchymal cells in the glenoid fossa. However, a minimum threshold of strain must first be exceeded before these mesenchymal cells can differentiate to ultimately form new bone.
Collapse
Affiliation(s)
- A B M Rabie
- Department of Orthodontics, Faculty of Dentistry, University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China.
| | | | | |
Collapse
|
36
|
Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol (1985) 2001; 91:1971-6. [PMID: 11641332 DOI: 10.1152/jappl.2001.91.5.1971] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical loading stimulates bone formation and regulates bone size, shape, and strength. It is recognized that strain magnitude, strain rate, and frequency are variables that explain bone stimulation. Early loading studies have shown that a low number (36) of cycles/day (cyc) induced maximal bone formation when strains were high (2,000 microepsilon) (Rubin CT and Lanyon LE. J Bone Joint Surg Am 66: 397-402, 1984). This study examines whether cycle number directly affects the bone response to loading and whether cycle number for activation of formation varies with load magnitude at low frequency. The adult rat tibiae were loaded in four-point bending at 25 (-800 microepsilon) or 30 N (-1,000 microepsilon) for 0, 40, 120, or 400 cyc at 2 Hz for 3 wk. Differences in periosteal and endocortical formation were examined by histomorphometry. Loading did not stimulate bone formation at 40 cyc. Compared with control tibiae, tibiae loaded at -800 microepsilon showed 2.8-fold greater periosteal bone formation rate at 400 cyc but no differences in endocortical formation. Tibiae loaded at -1,000 microepsilon and 120 or 400 cyc had 8- to 10-fold greater periosteal formation rate, 2- to 3-fold greater formation surface, and 1-fold greater endocortical formation surface than control. As applied load or strain magnitude decreased, the number of cyc required for activation of formation increased. We conclude that, at constant frequency, the number of cyc required to activate formation is dependent on strain and that, as number of cyc increases, the bone response increases.
Collapse
Affiliation(s)
- D M Cullen
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA.
| | | | | |
Collapse
|
37
|
Cullen DM, Smith RT, Akhter MP. Time course for bone formation with long-term external mechanical loading. J Appl Physiol (1985) 2000; 88:1943-8. [PMID: 10846003 DOI: 10.1152/jappl.2000.88.6.1943] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased mechanical loading of bone with the rat tibia four-point bending device stimulates bone formation on periosteal and endocortical surfaces. With long-term loading cell activity diminishes, and it has been reported that early gains in bone size may reverse. This study examined the time course for bone cellular and structural response after 6, 12, and 18 wk of loading at 1,200-1, 700 microstrain (muepsilon). Bone formation rates, measured by histomorphometry, were compared within groups, between loaded and contralateral nonloaded tibiae, and between weeks. Formation surface, mineral apposition rate, and bone formation rate on periosteal and endocortical surfaces were elevated after 6 wk of loading. By 12 wk of loading, periosteal and endocortical formation surface and endocortical mineral apposition rates were elevated. By 18 wk of loading, periosteal adaptation appeared complete, whereas endocortical mineral apposition rate remained elevated. No periosteal resorption was observed. Average thickness of new bone formed, from baseline to collection, was greater in loaded than nonloaded tibiae by week 6 and was maintained through week 18. Early increases in bone formation result in periosteal apposition of new bone that persists after formation ceases.
Collapse
Affiliation(s)
- D M Cullen
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA.
| | | | | |
Collapse
|