1
|
Marti P, Pitarch-Castellano I, Muelas N, Azorín I, Fores L, Vilchez R, Sevilla T, Vilchez JJ. Asymptomatic HyperCKemia in the Pediatric Population: A Prospective Study Utilizing Next-Generation Sequencing and Ancillary Tests. Neurology 2025; 104:e210116. [PMID: 39666917 DOI: 10.1212/wnl.0000000000210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Persistent elevation of serum creatine kinase levels (hyperCKemia) as an isolated manifestation presents a diagnostic challenge. Genetic myopathies are frequently involved; however, studies using next-generation sequencing (NGS) in pediatric patients are lacking, and the significance of genetic aberrations remains poorly understood. This study, therefore, aimed to investigate the relevance of NGS and the support of contemporary diagnostic tools in the diagnosis of pediatric asymptomatic hyperCKemia. METHODS This was a prospective cohort study enrolling pediatric (0-18 years old) patients meeting the predefined criteria for asymptomatic/paucisymptomatic hyperCKemia, excluding DMD gene deletion/duplication, recruited from a referral center. NGS, muscle MRI, EMG, and muscle biopsies with immunolabeling and inflammatory markers were performed according to a prespecified protocol. Data analysis was performed using descriptive/univariate statistics and Bayesian logistic regression. RESULTS The series comprised 65 patients (78% male). NGS diagnosis was achieved in 55% of the cohort, with 70% of the pathogenic variants involving 7 genes (DMD, CAPN3, ANO5, DYSF, RYR1, GAA, and CAV3). The diagnostic rate was similar across all age groups; however, the gene profiles varied between the childhood and juvenile groups. EMG yielded myopathic features in 48% of the investigated cases, being predictive for diagnosis (p < 0.05; odds ratio [OR] 13.484, 95% CI 1.358-705.297). MRI showed normal (64%), focal fatty change (26%), or short-tau inversion recovery hyperintensity (10%) profiles, which were not predictive of diagnosis but supported muscle biopsy indications. Muscle biopsy provided a significant diagnostic effect (p < 0.05; OR 0.028, 95% CI 0.001-0.238), contributing to myopathologic features clarifying the variant pathogenicity and identifying inflammatory myopathies. The diagnoses remained inconclusive and unresolved in 14% and 29% of the cohorts, respectively. The diagnostic rate for patients with CK levels below the threshold of 3× was 42%. In multivariate analysis, NGS was the only variable achieving a significant diagnostic effect (β = 9.85, 95% CI 4.65-16.09). DISCUSSION NGS, as the primary diagnostic tool for investigating hyperCKemia in the pediatric population, yielded a higher diagnostic rate. However, muscle biopsies are necessary to define variants of uncertain pathogenicity and aid in identifying inflammatory myopathies. EMG and MRI may play a role in hyperCKemia characterization, guiding the decision to perform muscle biopsy. The primary limitation of this study was that not all ancillary tests were performed in all recruited patients owing to ethical restrictions, which lowered the power of the predictive analysis.
Collapse
Affiliation(s)
- Pilar Marti
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Inmaculada Pitarch-Castellano
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Nuria Muelas
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Inmaculada Azorín
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Lorena Fores
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Roger Vilchez
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Teresa Sevilla
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| | - Juan Jesus Vilchez
- From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain
| |
Collapse
|
2
|
Kuchina A, Murtazina A, Borovikov A, Subbotin D, Bardakov S, Akhkiamova M, Nikolaeva A, Shchagina O, Kutsev S. Challenging Diagnosis of a Patient with Two Novel Variants in the SYNE1 Gene. Int J Mol Sci 2024; 25:10841. [PMID: 39409170 PMCID: PMC11476505 DOI: 10.3390/ijms251910841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
We report a case of SYNE1-associated autosomal recessive spinocerebellar ataxia (SCAR8) presenting with a complex multisystemic phenotype, including highly elevated creatine kinase levels and lower-leg muscle atrophy. In addition to identifying two novel pathogenic variants in the SYNE1 gene, whole-exome sequencing revealed three variants of uncertain significance in the DYSF gene. Electromyography and muscle magnetic resonance imaging indicated a neurogenic pattern of muscle involvement. These findings, along with the segregation analysis of the variants, allowed us to exclude DYSF-associated muscular dystrophy; however, we cannot entirely rule out the possibility that the DYSF gene variants may act as modifiers of the patient's phenotype.
Collapse
Affiliation(s)
- Anna Kuchina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Aysylu Murtazina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Artem Borovikov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Dmitrii Subbotin
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Sergey Bardakov
- Department of Neurology, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia;
| | - Maria Akhkiamova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Aleksandra Nikolaeva
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Olga Shchagina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (A.M.); (A.B.); (D.S.); (M.A.); (A.N.); (O.S.); (S.K.)
| |
Collapse
|
3
|
Skolka MP, Milone M, Litchy WJ, Laughlin RS, Rubin DI, Liewluck T. The utility of electrodiagnostic testing in unprovoked rhabdomyolysis in the era of next-generation sequencing. Muscle Nerve 2024; 70:180-186. [PMID: 38533679 DOI: 10.1002/mus.28087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION/AIMS Rhabdomyolysis is an etiologically heterogeneous, acute necrosis of myofibers characterized by transient marked creatine kinase (CK) elevation associated with myalgia, muscle edema, and/or weakness. The study aimed to determine the role of electrodiagnostic (EDX) testing relative to genetic testing and muscle biopsy in patients with unprovoked rhabdomyolysis in identifying an underlying myopathy. METHODS EDX database was reviewed to identify unprovoked rhabdomyolysis patients who underwent EDX testing between January 2012 and January 2022. Each patient's clinical profile, EDX findings, muscle pathology, laboratory, and genetic testing results were analyzed. RESULTS Of 66 patients identified, 32 had myopathic electromyography (EMG). Muscle biopsy and genetic testing were performed in 41 and 37 patients, respectively. A definitive diagnosis was achieved in 15 patients (11 myopathic EMG and 4 nonmyopathic EMG; p = .04) based on abnormal muscle biopsy (4/11 patients) or genetic testing (12/12 patients, encompassing 5 patients with normal muscle biopsy and 3 patients with nonmyopathic EMG). These included seven metabolic and eight nonmetabolic myopathies (five muscular dystrophies and three ryanodine receptor 1 [RYR1]-myopathies). Patients were more likely to have baseline weakness (p < .01), elevated baseline CK (p < .01), and nonmetabolic myopathies (p = .03) when myopathic EMG was identified. DISCUSSION Myopathic EMG occurred in approximately half of patients with unprovoked rhabdomyolysis, more likely in patients with weakness and elevated CK at baseline. Although patients with myopathic EMG were more likely to have nonmetabolic myopathies, nonmyopathic EMG did not exclude myopathy, and genetic testing was primarily helpful to identify an underlying myopathy. Genetic testing should likely be first-tier diagnostic testing following unprovoked rhabdomyolysis.
Collapse
Affiliation(s)
| | | | | | | | - Devon I Rubin
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
León P, Franco P, Hinojosa N, Torres K, Moreano A, Romero VI. TTN novel splice variant in familial dilated cardiomyopathy and splice variants review: a case report. Front Cardiovasc Med 2024; 11:1387063. [PMID: 38938651 PMCID: PMC11210389 DOI: 10.3389/fcvm.2024.1387063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
This case report details the identification of a novel likely pathogenic splicing variant in the TTN gene, associated with dilated cardiomyopathy (DCM), in a 42-year-old male patient presenting with early-onset heart failure and reduced ejection fraction. DCM is a nonischemic heart condition characterized by left biventricular dilation and systolic dysfunction, with approximately one-third of cases being familial and often linked to genetic mutations. The TTN gene, encoding the largest human protein essential for muscle contraction and sarcomere structure, is implicated in about 25% of DCM cases through mutations, especially truncating variants. Our investigation revealed a previously unreported G > C mutation at the splice acceptor site in intron 356 of TTN, confirmed by Sanger sequencing and not found in population databases, suggesting a novel contribution to the understanding of DCM etiology. The case emphasizes the critical role of the TTN gene in cardiac function and the genetic complexity underlying DCM. A comprehensive literature review highlighted the prevalence and significance of splice variants in the TTN gene, particularly those affecting the titin A-band, which is known for its role in muscle contraction and stability. This variant's identification underscores the importance of genetic screening in patients with DCM, offering insights into the disease's familial transmission and potential therapeutic targets. Our findings contribute to the expanding knowledge of genetic factors in DCM, demonstrating the necessity of integrating genetic diagnostics in cardiovascular medicine. This case supports the growing evidence linking splicing mutations in specific regions of the TTN gene to DCM development and underscores the importance of genetic counseling and testing in managing heart disease.
Collapse
Affiliation(s)
- Paul León
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paula Franco
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Nicole Hinojosa
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kevin Torres
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andrés Moreano
- Department of Cardiology, Universidad de Sao Paulo, Sao Paulo, Brazil
| | - Vanessa I. Romero
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
5
|
Clayton JS, Vo C, Crane J, Scriba CK, Saker S, Larmonier T, Malfatti E, Romero NB, Ravenscroft G, Laing NG, Taylor RL. Generation of two iPSC lines from adult central core disease patients with dominant missense variants in the RYR1 gene. Stem Cell Res 2024; 77:103411. [PMID: 38582058 DOI: 10.1016/j.scr.2024.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
RYR1 variants are a common cause of congenital myopathies, including multi-minicore disease (MmD) and central core disease (CCD). Here, we generated iPSC lines from two CCD patients with dominant RYR1 missense variants that affect the transmembrane (pore) and SPRY3 protein domains (p.His4813Tyr and p.Asn1346Lys, respectively). Both lines had typical iPSC morphology, expressed canonical pluripotency markers, exhibited trilineage differentiation potential, and had normal karyotypes. Together with existing RYR1 iPSC lines, these represent important tools to study and develop treatments for RYR1-related myopathies.
Collapse
Affiliation(s)
- Joshua S Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.
| | - Christina Vo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Jordan Crane
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Carolin K Scriba
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia; Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, Australia
| | - Safaa Saker
- Genethon, DNA and Cell Bank, 91000 Evry, France
| | | | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, France; Université Paris Est, U955, INSERM, IMRB, F-94010 Créteil, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France; Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Rhonda L Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
6
|
Ebert SE, Meiling JB, Caress JB, Gandhi Mehta RK, Baute Penry V, Puwanant A, Cartwright MS. Clinical Utility and Diagnostic Yield of Genetic Testing for Inherited Neuromuscular Disorders in a Single, Large Neuromuscular Center. Neurol Clin Pract 2024; 14:e200268. [PMID: 38585444 PMCID: PMC10996901 DOI: 10.1212/cpj.0000000000200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives Most published studies on the clinical utility of genetic testing for neuromuscular diseases (NMDs) focus on disease-specific cohorts and/or involve multiple centers. The aim of this study was to examine the clinical utility and diagnostic yield of genetic testing at a single, large neuromuscular center. Unlike previous studies, this study is unique in that it includes a broad array of patients at a single, large neuromuscular center, providing real-world data that may assist both neuromuscular specialists as well as general neurologists in decision-making regarding the need for genetic testing in patients with suspected NMDs. Methods Genetic testing results were reviewed for all patients who underwent testing through a single genetic testing company for NMDs in this single laboratory at a large neuromuscular center from 2015 to 2020. Retrospective chart reviews were performed to determine whether genetic testing results conferred a specific NMD diagnosis, including cases where a variant of uncertain significance (VUS) was identified. Results Genetic testing was pursued for 192 patients. A positive result, defined as a pathogenic mutation, a VUS, or both, was found in 77.1%. A definitive diagnosis was conferred in 35.9%. The most common testing indication was suspected neuropathy (53.3%), and the indication with the highest diagnostic yield was suspected myopathy (48.7%). Discussion This study provides further evidence of the clinical utility of genetic testing for NMDs in a real-world setting with over one-third of patients tested receiving a definitive diagnosis. Over time, genetic testing will continue to become increasingly accessible, cost-effective, and sensitive, which will lead to even more utilization.
Collapse
Affiliation(s)
- Suzahn E Ebert
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - James B Meiling
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - James B Caress
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Rachana K Gandhi Mehta
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Vanessa Baute Penry
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Araya Puwanant
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Michael S Cartwright
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
7
|
Ren M, Sambuughin N, Mungunshukh O, Edgeworth DB, Hupalo D, Zhang X, Wilkerson MD, Dalgard CL, O’Connor FG, Deuster PA. Genome-Wide Analysis of Exertional Rhabdomyolysis in Sickle Cell Trait Positive African Americans. Genes (Basel) 2024; 15:408. [PMID: 38674343 PMCID: PMC11049803 DOI: 10.3390/genes15040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Sickle cell trait (SCT), although generally a benign carrier state of hemoglobin S (HbAS), is a risk factor for exertional rhabdomyolysis (ERM), a rare but potentially fatal consequence of highly intense physical exercise, particularly among active-duty military personnel and high-performance athletes. The association between SCT and ERM is poorly understood. The objective of this study was to elucidate the genetic basis of ERM in an SCT-positive African American cohort. SCT-positive African Americans with a personal history of ERM (cases, n = 30) and without history of ERM (controls, n = 53) were enrolled in this study. Whole-genome sequencing was performed on DNA samples isolated from peripheral white blood cells. Participants' demographic, behavioral, and medical history information was obtained. An additional 131 controls were extracted from SCT-positive subjects of African descent from the 1000 Genomes Project. SCT carriers with ERM were characterized by myotoxicity features, significant muscle involvement dominated by muscle weakness, and severe pain and substantial increase in serum creatine kinase, with a mean value of 50,480 U/L. A distinctive feature of the SCT individuals with ERM was exertional collapse, which was reported in 53.3% of the cases in the study cohort. An important factor for the development of ERM was the duration and frequency of strenuous physical activity in the cases compared to the controls. Whole-genome sequencing identified 79,696 protein-coding variants. Genome-wide association analysis revealed that the p.C477R, rs115958260 variant in the SLC44A3 gene was significantly associated with ERM event in SCT-positive African Americans. The study results suggest that a combination of vigorous exercise and a genetic predisposing factor is involved in ERM.
Collapse
Affiliation(s)
- Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Ognoon Mungunshukh
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Anatomy, Physiology, and Genetics, Center for Military Precision Health, Uniformed Services University, Bethesda, MD 20814, USA
| | - Daniel Baxter Edgeworth
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Daniel Hupalo
- Department of Anatomy, Physiology, and Genetics, Center for Military Precision Health, Uniformed Services University, Bethesda, MD 20814, USA
| | - Xijun Zhang
- Department of Anatomy, Physiology, and Genetics, Center for Military Precision Health, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew D. Wilkerson
- Department of Anatomy, Physiology, and Genetics, Center for Military Precision Health, Uniformed Services University, Bethesda, MD 20814, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology, and Genetics, Center for Military Precision Health, Uniformed Services University, Bethesda, MD 20814, USA
| | - Francis G. O’Connor
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA (D.B.E.); (F.G.O.)
| |
Collapse
|
8
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Bhai SF, Vissing J. Diagnosis and management of metabolic myopathies. Muscle Nerve 2023; 68:250-256. [PMID: 37226557 DOI: 10.1002/mus.27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/26/2023]
Abstract
Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.
Collapse
Affiliation(s)
- Salman F Bhai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian, Dallas, Texas, USA
| | - John Vissing
- Department of Neurology, Rigshospitalet, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
Collapse
|
12
|
Cabrera-Serrano M, Ravenscroft G. Recent advances in our understanding of genetic rhabdomyolysis. Curr Opin Neurol 2022; 35:651-657. [PMID: 35942668 DOI: 10.1097/wco.0000000000001096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in our understanding of the genetics of rhabdomyolysis. RECENT FINDINGS Rhabdomyolysis is the acute breakdown of myofibres resulting in systemic changes that can be life-threatening. Environmental triggers, including trauma, exercise, toxins and infections, and/or gene defects can precipitate rhabdomyolysis. A schema (aptly titled RHABDO) has been suggested for evaluating whether a patient with rhabdomyolysis is likely to harbour an underlying genetic defect. It is becoming increasingly recognized that defects in muscular dystrophy and myopathy genes can trigger rhabdomyolysis, even as the sole or presenting feature. Variants in genes not previously associated with human disease have been identified recently as causative of rhabdomyolysis, MLIP , MYH1 and OBSCN . Our understanding of the pathomechanisms contributing to rhabdomyolysis have also improved with an increased awareness of the role of mitochondrial dysfunction in LPIN1 , FDX2 , ISCU and TANGO2 -mediated disease. SUMMARY An accurate genetic diagnosis is important for optimal clinical management of the patient, avoiding associated triggers and genetic counselling and cascade screening. Despite recent advances in our understanding of the genetics contributing to rhabdomyolysis, many patients remain without an accurate genetic diagnosis, suggesting there are many more causative genes, variants and disease mechanisms to uncover.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- Unidad de Enfermedades Neuromusculares, Servicio de Neurologia y Neurofisiologia and Instituto de Biomedicina de Sevilla (IBiS)., Hospital Virgen del Rocio, Sevilla, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
A genetic basis is identified in 74% cases of paediatric hyperCKaemia without weakness presenting to a tertiary paediatric neuromuscular centre. Neuromuscul Disord 2022; 32:707-717. [DOI: 10.1016/j.nmd.2022.07.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
14
|
Cabrera-Serrano M, Caccavelli L, Savarese M, Vihola A, Jokela M, Johari M, Capiod T, Madrange M, Bugiardini E, Brady S, Quinlivan R, Merve A, Scalco R, Hilton-Jones D, Houlden H, Ibrahim Aydin H, Ceylaner S, Vockley J, Taylor RL, Folland C, Kelly A, Goullee H, Ylikallio E, Auranen M, Tyynismaa H, Udd B, Forrest ARR, Davis MR, Bratkovic D, Manton N, Robertson T, McCombe P, Laing NG, Phillips L, de Lonlay P, Ravenscroft G. Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain 2021; 145:3985-3998. [DOI: 10.1093/brain/awab484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified ten bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in SR function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in SR Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the SR and/or a decrease in Ca2+ SR storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Unidad de Enfermedades Neuromusculares. Servicio de Neurologia y Neurofisiologia. Hospital Virgen del Rocio, Sevilla, Spain
| | - Laure Caccavelli
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Neurocenter, Department of Neurology, Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Thierry Capiod
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marine Madrange
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Enrico Bugiardini
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Stefen Brady
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Ashirwad Merve
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Renata Scalco
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - David Hilton-Jones
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | | | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Aasta Kelly
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Nicholas Manton
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Thomas Robertson
- Anatomical Pathology, Queensland Pathology, Brisbane, Queensland, Australia
| | - Pamela McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Liza Phillips
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
- The University of Adelaide, Adelaide, SA, Australia
| | - Pascale de Lonlay
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
15
|
Phenotypic Variability of MEGF10 Variants Causing Congenital Myopathy: Report of Two Unrelated Patients from a Highly Consanguineous Population. Genes (Basel) 2021; 12:genes12111783. [PMID: 34828389 PMCID: PMC8620084 DOI: 10.3390/genes12111783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Congenital myopathies are rare neuromuscular hereditary disorders that manifest at birth or during infancy and usually appear with muscle weakness and hypotonia. One of such disorders, early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD, OMIM: 614399, MIM: 612453), is a rare autosomal recessive disorder caused by biallelic mutations (at homozygous or compound heterozygous status) in MEGF10 (multiple epidermal growth factor-like domains protein family). Here, we report two unrelated patients, who were born to consanguineous parents, having two novel MEGF10 deleterious variants. Interestingly, the presence of MEGF10 associated EMARDD has not been reported in Saudi Arabia, a highly consanguineous population. Moreover, both variants lead to a different phenotypic onset of mild and severe types. Our work expands phenotypic features of the disease and provides an opportunity for genetic counseling to the inflicted families.
Collapse
|
16
|
Gemelli C, Traverso M, Trevisan L, Fabbri S, Scarsi E, Carlini B, Prada V, Mongini T, Ruggiero L, Patrone S, Gallone S, Iodice R, Pisciotta L, Zara F, Origone P, Rota E, Minetti C, Bruno C, Schenone A, Mandich P, Fiorillo C, Grandis M. An integrated approach to the evaluation of patients with asymptomatic or minimally symptomatic hyperCKemia. Muscle Nerve 2021; 65:96-104. [PMID: 34687219 PMCID: PMC9298868 DOI: 10.1002/mus.27448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
Introduction/Aims Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. Methods We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II–related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. Results Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. Discussion We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first‐line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.
Collapse
Affiliation(s)
- Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Monica Traverso
- Paediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lucia Trevisan
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Sabrina Fabbri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Elena Scarsi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Barbara Carlini
- Unit of Medical Genetics, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Salvatore Gallone
- Neurogenetic Service, Department of Neurosciences, AOU Città della salute e della scienza, Torino, Italy
| | - Rosa Iodice
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics IRCCS G. Gaslini Institute, Genoa, Italy
| | - Paola Origone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Eugenia Rota
- Neurology Unit, ASL Alessandria, Novi Ligure, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Claudio Bruno
- Centre of Experimental and Translational Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
17
|
Lopes Abath Neto O, Medne L, Donkervoort S, Rodríguez-García ME, Bolduc V, Hu Y, Guadagnin E, Foley AR, Brandsema JF, Glanzman AM, Tennekoon GI, Santi M, Berger JH, Megeney LA, Komaki H, Inoue M, Cotrina-Vinagre FJ, Hernández-Lain A, Martin-Hernández E, Williams L, Borell S, Schorling D, Lin K, Kolokotronis K, Lichter-Konecki U, Kirschner J, Nishino I, Banwell B, Martínez-Azorín F, Burgon PG, Bönnemann CG. MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase. Brain 2021; 144:2722-2731. [PMID: 34581780 PMCID: PMC8536936 DOI: 10.1093/brain/awab275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023] Open
Abstract
Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maria Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John F Brandsema
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Allan M Glanzman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gihan I Tennekoon
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariarita Santi
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin H Berger
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Michio Inoue
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Martin-Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - Linford Williams
- Division of Medical Genetics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Sabine Borell
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - David Schorling
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Kimberly Lin
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Uta Lichter-Konecki
- Division of Medical Genetics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Department of Neuropediatrics, University Hospital Bonn, Faculty of Medicine, Bonn, Germany
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Brenda Banwell
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Patrick G Burgon
- Department of Chemistry and Earth Science, College of Arts and Sciences, Qatar University, Qatar
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Mergnac JP, Wiedemann A, Chery C, Ravel JM, Namour F, Guéant JL, Feillet F, Oussalah A. Diagnostic yield of clinical exome sequencing as a first-tier genetic test for the diagnosis of genetic disorders in pediatric patients: results from a referral center study. Hum Genet 2021; 141:1269-1278. [PMID: 34495415 DOI: 10.1007/s00439-021-02358-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/28/2021] [Indexed: 12/29/2022]
Abstract
The emergence of next-generation sequencing enabled a cost-effective and straightforward diagnostic approach to genetic disorders using clinical exome sequencing (CES) panels. We performed a retrospective observational study to assess the diagnostic yield of CES as a first-tier genetic test in 128 consecutive pediatric patients addressed to a referral center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. CES was performed using the TruSight One (4811 genes) or the TruSight One expanded (6699 genes) panel on an Illumina sequencing platform. The median age was 6.5 years (IQR 2.0-12.0) with 43% of males (55/128), and the median disease duration was 7 months (IQR 1-47). In the whole analysis, the CES diagnostic yield was 55% (70/128). The median test-to-report time was 5 months (IQR 4-7). According to CES indications, the CES diagnostic yields were 81% (21/26) for hyperlipidemia, 75% (6/8) for osteogenesis imperfecta, 64% (25/39) for metabolic disorders, 39% (10/26) for neurological disorders, and 28% (8/29) for the subgroup of patients with miscellaneous conditions. Our results demonstrate the usefulness of a CES-based diagnosis as a first-tier genetic test to establish a molecular diagnosis in pediatric patients with a suspected genetic disorder with a median test-to-report time of 5 months. It highlights the importance of a close interaction between the pediatrician with expertise in genetic disorders and the molecular medicine physician to optimize both CES indication and interpretation. Diagnostic yield of clinical exome sequencing (CES) as a first-tier genetic test for diagnosing genetic disorders in 128 consecutive pediatric patients referred to a reference center in the North-East of France for a suspected genetic disorder, mainly an inborn error of metabolism between January 2016 and August 2020. The CES diagnostic yields are reported in the whole population and patients' subgroups (hyperlipidemia, osteogenesis imperfecta, metabolic diseases, neurological disorders, miscellaneous conditions) (Icons made by Flaticon, flaticon.com; CC-BY-3.0).
Collapse
Affiliation(s)
- Jean-Philippe Mergnac
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Pediatrics, University Hospital of Nancy, 54000, Nancy, France
| | - Arnaud Wiedemann
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Pediatric Intensive Care Unit, University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France
| | - Céline Chery
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Marie Ravel
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France
| | - Farès Namour
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France
| | - François Feillet
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France.,Department of Pediatrics, University Hospital of Nancy, 54000, Nancy, France.,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France
| | - Abderrahim Oussalah
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Nancy, France. .,Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000, Nancy, France. .,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, 54000, Nancy, France.
| |
Collapse
|
19
|
Spedicati B, Cocca M, Palmisano R, Faletra F, Barbieri C, Francescatto M, Mezzavilla M, Morgan A, Pelliccione G, Gasparini P, Girotto G. Natural human knockouts and Mendelian disorders: deep phenotyping in Italian isolates. Eur J Hum Genet 2021; 29:1272-1281. [PMID: 33727708 PMCID: PMC8384846 DOI: 10.1038/s41431-021-00850-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023] Open
Abstract
Whole genome sequencing (WGS) allows the identification of human knockouts (HKOs), individuals in whom loss of function (LoF) variants disrupt both alleles of a given gene. HKOs are a valuable model for understanding the consequences of genes function loss. Naturally occurring biallelic LoF variants tend to be significantly enriched in "genetic isolates," making these populations specifically suited for HKO studies. In this work, a meticulous WGS data analysis combined with an in-depth phenotypic assessment of 947 individuals from three Italian genetic isolates led to the identification of ten biallelic LoF variants in ten OMIM genes associated with known autosomal recessive diseases. Notably, only a minority of the identified HKOs (C7, F12, and GPR68 genes) displayed the expected phenotype. For most of the genes, instead, (ACADSB, FANCL, GRK1, LGI4, MPO, PGAM2, and RP1L1), the carriers showed none or few of the signs and symptoms typically associated with the related diseases. Of particular interest is a case presenting with a FANCL biallelic LoF variant and a positive diepoxybutane test but lacking a full Fanconi anemia phenotypic spectrum. Identifying KO subjects displaying expected phenotypes suggests that the lack of correct genetic diagnoses may lead to inappropriate and delayed treatment. In contrast, the presence of HKOs with phenotypes deviating from the expected patterns underlines how LoF variants may be responsible for broader phenotypic spectra. Overall, these results highlight the importance of in-depth phenotypical characterization to understand the role of LoF variants and the advantage of studying these variants in genetic isolates.
Collapse
Affiliation(s)
- Beatrice Spedicati
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Massimiliano Cocca
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Roberto Palmisano
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Flavio Faletra
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Caterina Barbieri
- grid.18887.3e0000000417581884Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Francescatto
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Massimo Mezzavilla
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Anna Morgan
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Giulia Pelliccione
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Paolo Gasparini
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy ,grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| | - Giorgia Girotto
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy ,grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health – I.R.C.C.S. “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
20
|
Juntas Morales R, Perrin A, Solé G, Lacourt D, Pegeot H, Walther-Louvier U, Cintas P, Cances C, Espil C, Theze C, Zenagui R, Yauy K, Cosset E, Renard D, Rigau V, Maues de Paula A, Uro-Coste E, Arne-Bes MC, Martin Négrier ML, Leboucq N, Acket B, Malfatti E, Biancalana V, Metay C, Richard P, Rendu J, Rivier F, Koenig M, Cossée M. An Integrated Clinical-Biological Approach to Identify Interindividual Variability and Atypical Phenotype-Genotype Correlations in Myopathies: Experience on A Cohort of 156 Families. Genes (Basel) 2021; 12:genes12081199. [PMID: 34440373 PMCID: PMC8392536 DOI: 10.3390/genes12081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis of myopathies is challenged by the high genetic heterogeneity and clinical overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and hyperCKemia or effort intolerance, using a large gene panel including genes classically associated with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines, segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies, and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield (47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases. Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein. Detection of inter-individual variability and atypical phenotype-genotype associations is essential for precision medicine, patient care, and to progress in the understanding of the molecular mechanisms of myopathies.
Collapse
Affiliation(s)
- Raul Juntas Morales
- Explorations Neurologiques et Centre SLA, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France;
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Aurélien Perrin
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Guilhem Solé
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Delphine Lacourt
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Henri Pegeot
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Ulrike Walther-Louvier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Claude Cances
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France;
| | - Caroline Espil
- Service de Neuropédiatrie, Centre Hospitalier de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Corinne Theze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Reda Zenagui
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Kevin Yauy
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Elodie Cosset
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Dimitri Renard
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 30029 Nîmes, France;
| | - Valerie Rigau
- Service de Pathologie, Centre Hospitalier Universitaire de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Andre Maues de Paula
- Service de Pathologie, Centre Hospitalier Universitaire de Marseille, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône Alpes, 13005 Marseille, France;
| | - Emmanuelle Uro-Coste
- Service de Pathologie, Centre Hospitalier Universitaire de Toulouse, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31300 Toulouse, France;
| | - Marie-Christine Arne-Bes
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Marie-Laure Martin Négrier
- CHU de Bordeaux, Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, 33076 Bordeaux, France;
| | - Nicolas Leboucq
- Service de Neuroradiologie, Centre Hospitalier de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Blandine Acket
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, 92380 Garches, France;
- U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, 78180 Versailles, France
| | - Valérie Biancalana
- Laboratoire de Diagnostic Génétique, Université de Strasbourg, 67084 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - John Rendu
- CHU Grenoble, Université de Grenoble Alpes, Inserm, U1216, GIN, 38706 Saint-Martin-d’Hères, France;
- Unité Médicale de Génétique Moléculaire, Centre Hospitalier, Universitaire Grenoble Alpes, 38043 Saint-Martin-d’Hères, France
| | - François Rivier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
21
|
Park EW, Shim YJ, Ha JS, Shin JH, Lee S, Cho JH. Diagnosis of Duchenne Muscular Dystrophy in a Presymptomatic Infant Using Next-Generation Sequencing and Chromosomal Microarray Analysis: A Case Report. CHILDREN-BASEL 2021; 8:children8050377. [PMID: 34064562 PMCID: PMC8151037 DOI: 10.3390/children8050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Duchenne muscular dystrophy is a progressive and lethal X-linked recessive neuromuscular disease caused by mutations in the dystrophin gene. It has a high rate of diagnostic delay; early diagnosis and treatment are often not possible due to delayed recognition of muscle weakness and lack of effective treatments. Current treatments based on genetic therapy can improve clinical results, but treatment must begin as early as possible before significant muscle damage. Therefore, early diagnosis and rehabilitation of Duchenne muscular dystrophy are needed before symptom aggravation. Creatine kinase is a diagnostic marker of neuromuscular disorders. Herein, the authors report a case of an infant patient with Duchenne muscular dystrophy with a highly elevated creatine kinase level but no obvious symptoms of muscle weakness. The patient was diagnosed with Duchenne muscular dystrophy via next-generation sequencing and chromosomal microarray analysis to identify possible inherited metabolic and neuromuscular diseases related to profound hyperCKemia. The patient is enrolled in a rehabilitation program and awaits the approval of the genetic treatment in Korea. This is the first report of an infantile presymptomatic Duchenne muscular dystrophy diagnosis using next-generation sequencing and chromosomal microarray analysis.
Collapse
Affiliation(s)
- Eun-Woo Park
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
| | - Ye-Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea;
| | - Jung-Sook Ha
- Department of Laboratory Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Korea;
| | - Soyoung Lee
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
| | - Jang-Hyuk Cho
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
- Correspondence: ; Tel.: +82-53-258-7912
| |
Collapse
|
22
|
Hannah-Shmouni F, Al-Shahoumi R, Brady LI, Wu L, Frei J, Tarnopolsky MA. Dual molecular diagnoses in a neurometabolic specialty clinic. Am J Med Genet A 2020; 185:766-773. [PMID: 33369152 DOI: 10.1002/ajmg.a.62034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 11/08/2022]
Abstract
Reports of patients with concomitant diagnoses of two inherited genetic disorders, sometimes referred to as "double trouble," have appeared intermittently in the medical literature. We report eight additional cases with dual diagnoses of two genetic conditions. All cases had a phenotype atypical for their primary diagnosis, leading to the search for a second genetic diagnosis. These cases highlight the importance of the history, physical examination and continued work-up if the phenotype of the patient falls drastically outside what has been reported with their primary diagnosis. Some of the diagnoses of the patients presented here (e.g., Myotonic Dystrophy Type 1, fascioscapulohumeral muscular dystrophy) would not have been identified by genetic testing done on a next generation sequencing backbone (e.g., panel or exome sequencing). When the clinical picture is atypical or more severe than expected the possibility of a dual diagnosis (double trouble) should be considered. Identification of a second genetic condition can impact management and genetic counseling.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Rashid Al-Shahoumi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lauren I Brady
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lily Wu
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Julia Frei
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Lau NKC, Chong YK, Cheung KPK, Loo KT, Ching CK. McArdle disease presenting as abnormal liver function: biochemical, anatomical and genetic characterisation in the first genetically confirmed Chinese family with a novel splicing variant. Pathology 2020; 53:670-673. [PMID: 33309034 DOI: 10.1016/j.pathol.2020.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Nike Kwai Cheung Lau
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong
| | - Yeow Kuan Chong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | - Ka Tai Loo
- Department of Pathology, Tuen Mun Hospital, Hong Kong
| | - Chor Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| |
Collapse
|
24
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
25
|
Dardas Z, Swedan S, Al-Sheikh Qassem A, Azab B. The impact of exome sequencing on the diagnostic yield of muscular dystrophies in consanguineous families. Eur J Med Genet 2020; 63:103845. [PMID: 31953240 DOI: 10.1016/j.ejmg.2020.103845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/04/2019] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders that are characterized by progressive skeletal muscle weakness and dystrophic changes on muscle biopsy. The broad genetic and clinical heterogeneity of MDs make the accurate diagnosis difficult via conventional approaches. This study investigated 23 patients from eight unrelated consanguineous families with MDs. Previous clinical assessments did not accurately clarify the type of their MD and/or misdiagnose them with another disease. Exome sequencing (ES) is an efficient, time-saving, and cost-effective tool, enabling disease-causing variant (DCV) detection in affected individuals. We investigated the use of ES to diagnose MD and discover the underlying genetic etiology. We achieved a remarkable diagnostic success rate of 87.5% (7 out of 8 families) which is the highest rate reported thus far compared to previous studies. We identified two novel pathogenic variants in DYSF gene (c.4179delG, c.1149+3G > C). The latter variant impacts the splicing machinery of DYSF mRNA. Moreover, we further assessed the pathogenicity of four recurrent variants ((DYSF, c.4076T > C), (GMPPB, c.458C > T), (SGCA, c.739G > A) (TTN, c.7331G > A), designated their neurological impact and added new phenotypes in patients with these variants. To our knowledge, this is the first study applying an ES-based comprehensive molecular diagnosis to Jordanian cohort with MDs. Our findings confirmed that ES is a powerful approach for the diagnosis of MD patients. This efficient method of molecular diagnosis is crucial for guiding patient clinical care, genetic counseling, and most importantly, paving the way for gene therapy which is currently in clinical trials.
Collapse
Affiliation(s)
- Zain Dardas
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan; Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
| | - Samer Swedan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Belal Azab
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan; Human and Molecular Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
26
|
Park J, Oh HM, Park HJ, Cho AR, Lee DW, Jang JH, Jang DH. Usefulness of comprehensive targeted multigene panel sequencing for neuromuscular disorders in Korean patients. Mol Genet Genomic Med 2019; 7:e00947. [PMID: 31475473 PMCID: PMC6785438 DOI: 10.1002/mgg3.947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Multigene panel sequencing (MGPS) is the first-line option in diagnostic testing for genetically heterogeneous but clinically similar conditions, such as neuromuscular disorders (NMDs). In this study, we aimed to assess the utility of comprehensive NMD MGPS and the need for updated panels. METHODS All patients were analyzed by either of two versions of the NMD MGPS and by chromosomal microarray and karyotype testing. Four patients with negative NMD MGPS results underwent whole exome sequencing. RESULTS In total, 91 patients were enrolled, and a genetic diagnosis was made in 36 (39.6%); of these, 33 were diagnosed by the comprehensive NMD MGPS, two were confirmed by chromosomal microarray, and one was diagnosed by whole exome sequencing. For MGPS, the diagnostic yield of Version 2 (19/52; 36.5%) was a little higher than that of Version 1 (14/39; 35.9%), and one gene identified in Version 2 was not included in Version 1. A total of 36 definitive and nine possible causative variants were identified, of which 17 were novel. CONCLUSION A more comprehensive panel for NMD MGPS can improve the diagnostic efficiency in genetic testing. The rapid discovery of new disease-causing genes over recent years necessitates updates to existing gene panels.
Collapse
Affiliation(s)
- Jihye Park
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah-Ra Cho
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
27
|
Rubegni A, Malandrini A, Dosi C, Astrea G, Baldacci J, Battisti C, Bertocci G, Donati MA, Dotti MT, Federico A, Giannini F, Grosso S, Guerrini R, Lenzi S, Maioli MA, Melani F, Mercuri E, Sacchini M, Salvatore S, Siciliano G, Tolomeo D, Tonin P, Volpi N, Santorelli FM, Cassandrini D. Next-generation sequencing approach to hyperCKemia: A 2-year cohort study. NEUROLOGY-GENETICS 2019; 5:e352. [PMID: 31517061 PMCID: PMC6705647 DOI: 10.1212/nxg.0000000000000352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023]
Abstract
Objective Next-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition. Methods Sixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies. Results A molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%. Variants of unknown significance were found in 17 patients (26%), whereas 16 cases (24%) remained molecularly undefined. The major features of the diagnosed cases were mild proximal muscle weakness (found in 27%) and myalgia (in 24%). Fourteen patients with a molecular diagnosis and mild myopathic features on muscle biopsy remained asymptomatic at a 24-month follow-up. Conclusions This study of patients with undiagnosed hyperCKemia, highlighting the advantages of NGS used as a first-tier diagnostic approach in genetically heterogeneous conditions, illustrates the ongoing evolution of molecular diagnosis in the field of clinical neurology. Isolated hyperCKemia can be the sole feature alerting to a progressive muscular disorder requiring careful surveillance.
Collapse
Affiliation(s)
- Anna Rubegni
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Alessandro Malandrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Claudia Dosi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Guja Astrea
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Jacopo Baldacci
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Carla Battisti
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Giulia Bertocci
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - M Alice Donati
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - M Teresa Dotti
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Antonio Federico
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Fabio Giannini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Salvatore Grosso
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Renzo Guerrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Sara Lenzi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Maria A Maioli
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Melani
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Eugenio Mercuri
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Michele Sacchini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Simona Salvatore
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Gabriele Siciliano
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Deborah Tolomeo
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Paola Tonin
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Nila Volpi
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Filippo M Santorelli
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| | - Denise Cassandrini
- IRCCS Fondazione Stella Maris (A.R., G.A., J.B., G.B., S.L., F.M.S., D.C.), Pisa, Italy; Department of Medicine (A.M., C.B., M.T.D., A.F., F.G., S.S., N.V.), Surgery and Neurosciences, University of Siena; Department of Clinical and Experimental Medicine (C.D., G.S., D.T.), University of Pisa; Metabolic Disease Unit (M.A.D., M.S.), AOU Meyer Children Hospital, Florence; Department of Molecular and Developmental Medicine (S.G.), University of Siena, Siena; Pediatric Neurology (R.G., F.M.), AOU Meyer Children Hospital, Florence; Neurophysiopathology Multiple Sclerosis Center Hospital Binaghi (M.A.M.), Cagliari; Pediatric Neurology and Nemo Clinical Centre (E.M.), Fondazione Policlinico Universitario "A. Gemelli IRCSS", Università Cattolica del Sacro Cuore, Rome; and Department of Neurosciences (P.T.), Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
28
|
Tomar S, Moorthy V, Sethi R, Chai J, Low PS, Hong STK, Lai PS. Mutational spectrum of dystrophinopathies in Singapore: Insights for genetic diagnosis and precision therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:230-244. [DOI: 10.1002/ajmg.c.31704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Vikaesh Moorthy
- Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Josiah Chai
- Department of Neurology, National Neuroscience Institute Singapore
| | - Poh Sim Low
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Stacey Tay Kiat Hong
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| |
Collapse
|
29
|
Sidhu M, Brady L, Vladutiu GD, Tarnopolsky MA. Novel heterozygous mutations in the PGAM2 gene with negative exercise testing. Mol Genet Metab Rep 2018; 17:53-55. [PMID: 30310767 PMCID: PMC6178239 DOI: 10.1016/j.ymgmr.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Pathogenic variants in the PGAM2 gene are associated with glycogen storage disease type X (GSDX) and is characterized by exercise induced muscle cramping, weakness, myoglobinuria, and often tubular aggregates in skeletal muscle. We report here a patient diagnosed with GSDX at 52 years of age with a normal increase in post-exercise lactate with both anaerobic and aerobic exercise. Genetic testing found two novel PGAM2 variants (c.426C > A, p.Tyr142Ter and c.533delG, p.Gly178Alafs*31).
Collapse
Affiliation(s)
- M Sidhu
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - L Brady
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - G D Vladutiu
- Departments of Pediatrics, Neurology, and Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - M A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|