1
|
Castillo-Triana N, Camargo-Mendoza M, Bernal-Pacheco Ó. Effects of subthalamic nucleus deep brain stimulation on the speech of Spanish-speaking Parkinson's disease patients during the first year of treatment. Codas 2024; 36:e20230194. [PMID: 39230179 PMCID: PMC11404841 DOI: 10.1590/2317-1782/20242023194en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/01/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE To describe the effects of subthalamic nucleus deep brain stimulation (STN-DBS) on the speech of Spanish-speaking Parkinson's disease (PD) patients during the first year of treatment. METHODS The speech measures (SMs): maximum phonation time, acoustic voice measures, speech rate, speech intelligibility measures, and oral diadochokinesis rates of nine Colombian idiopathic PD patients (four females and five males; age = 63 ± 7 years; years of PD = 10 ± 7 years; UPDRS-III = 57 ± 6; H&Y = 2 ± 0.3) were studied in OFF and ON medication states before and every three months during the first year after STN-DBS surgery. Praat software and healthy native listeners' ratings were used for speech analysis. Statistical analysis tried to find significant differences in the SMs during follow-up (Friedman test) and between medication states (Wilcoxon paired test). Also, a pre-surgery variation interval (PSVI) of reference for every participant and SM was calculated to make an individual analysis of post-surgery variation. RESULTS Non-significative post-surgery or medication state-related differences in the SMs were found. Nevertheless, individually, based on PSVIs, the SMs exhibited: no variation, inconsistent or consistent variation during post-surgery follow-up in different combinations, depending on the medication state. CONCLUSION As a group, participants did not have a shared post-surgery pattern of change in any SM. Instead, based on PSVIs, the SMs varied differently in every participant, which suggests that in Spanish-speaking PD patients, the effects of STN-DBS on speech during the first year of treatment could be highly variable.
Collapse
Affiliation(s)
- Nicolás Castillo-Triana
- Departamento de Comunicación Humana, Facultad de Medicina, Universidad Nacional de Colombia - UNAL - Bogotá, Colombia
| | - Maryluz Camargo-Mendoza
- Departamento de Comunicación Humana, Facultad de Medicina, Universidad Nacional de Colombia - UNAL - Bogotá, Colombia
| | | |
Collapse
|
2
|
Steurer H, Albrecht F, Gustafsson JK, Razi A, Franzén E, Schalling E. Speech and neuroimaging effects following HiCommunication: a randomized controlled group intervention trial in Parkinson's disease. Brain Commun 2024; 6:fcae235. [PMID: 39051026 PMCID: PMC11267236 DOI: 10.1093/braincomms/fcae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Speech, voice and communication changes are common in Parkinson's disease. HiCommunication is a novel group intervention for speech and communication in Parkinson's disease based on principles driving neuroplasticity. In a randomized controlled trial, 95 participants with Parkinson's disease were allocated to HiCommunication or an active control intervention. Acoustic analysis was performed pre-, post- and six months after intervention. Intention-to-treat analyses with missing values imputed in linear multilevel models and complimentary per-protocol analyses were performed. The proportion of participants with a clinically relevant increase in the primary outcome measure of voice sound level was calculated. Resting-state functional MRI was performed pre- and post-intervention. Spectral dynamic causal modelling and the parametric empirical Bayes methods were applied to resting-state functional MRI data to describe effective connectivity changes in a speech-motor-related network of brain regions. From pre- to post-intervention, there were significant group-by-time interaction effects for the measures voice sound level in text reading (unstandardized b = 2.3, P = 0.003), voice sound level in monologue (unstandardized b = 2.1, P = 0.009), Acoustic Voice Quality Index (unstandardized b = -0.5, P = 0.016) and Harmonics-to-Noise Ratio (unstandardized b = 1.3, P = 0.014) post-intervention. For 59% of the participants, the increase in voice sound level after HiCommunication was clinically relevant. There were no sustained effects at the six-month follow-up. In the effective connectivity analysis, there was a significant decrease in inhibitory self-connectivity in the left supplementary motor area and increased connectivity from the right supplementary motor area to the left paracentral gyrus after HiCommunication compared to after the active control intervention. In conclusion, the HiCommunication intervention showed promising effects on voice sound level and voice quality in people with Parkinson's disease, motivating investigations of barriers and facilitators for implementation of the intervention in healthcare settings. Resting-state brain effective connectivity was altered following the intervention in areas implicated, possibly due to reorganization in brain networks.
Collapse
Affiliation(s)
- Hanna Steurer
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
- Research & Development Unit, Stockholms Sjukhem, 112 19 Stockholm, Sweden
| | - Franziska Albrecht
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden
- Women’s Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, 141 57 Huddinge, Stockholm, Sweden
| | - Joakim Körner Gustafsson
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | - Adeel Razi
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, 3800, Australia
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON M5G 1M1, Canada
| | - Erika Franzén
- Research & Development Unit, Stockholms Sjukhem, 112 19 Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden
- Women’s Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, 141 57 Huddinge, Stockholm, Sweden
| | - Ellika Schalling
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Speech-Language Pathology, Uppsala University, 751 22 Uppsala, Sweden
| |
Collapse
|
3
|
Tabari F, Berger JI, Flouty O, Copeland B, Greenlee JD, Johari K. Speech, voice, and language outcomes following deep brain stimulation: A systematic review. PLoS One 2024; 19:e0302739. [PMID: 38728329 PMCID: PMC11086900 DOI: 10.1371/journal.pone.0302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States of America
| | - Brian Copeland
- Department of Neurology, LSU Health Sciences Center, New Orleans, LA, United States of America
| | - Jeremy D. Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- Iowa Neuroscience Institute, Iowa City, IA, United States of America
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
4
|
Swinnen BEKS, Lotfalla V, Scholten MN, Prins RHN, Goes KM, de Vries S, Geytenbeek JJM, Dijk JM, Odekerken VJ, Bot M, van den Munckhof P, Schuurman PR, de Bie RMA, Beudel M. Programming Algorithm for the Management of Speech Impairment in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Neuromodulation 2024; 27:528-537. [PMID: 37452799 DOI: 10.1016/j.neurom.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) has an ambiguous relation to speech. Speech impairment can be a stimulation-induced side effect, and parkinsonian dysarthria can improve with STN-DBS. Owing to the lack of an up-to-date and evidence-based approach, DBS reprogramming for speech impairment is largely blind and greatly relies on the physician's experience. In this study, we aimed to establish an evidence- and experience-based algorithm for managing speech impairment in patients with PD treated with STN-DBS. MATERIALS AND METHODS We performed a single-center retrospective study to identify patients with STN-DBS and speech impairment. Onset of speech impairment, lead localization, and assessment of DBS-induced nature of speech impairment were collected. When DBS settings were adjusted for improving speech, the magnitude and duration of effect were collected. We also performed a systematic literature review to identify studies describing the effects of parameter adjustments aimed at improving speech impairment in patients with PD receiving STN-DBS. RESULTS In the retrospective study, 245 of 631 patients (38.8%) with STN-DBS had significant speech impairment. The probability of sustained marked improvement upon reprogramming was generally low (27.9%). In the systematic review, 23 of 662 identified studies were included. Only two randomized controlled trials have been performed, providing evidence for interleaving-interlink stimulation only. Considerable methodologic heterogeneity precluded the conduction of a meta-analysis. CONCLUSIONS Speech impairment in STN-DBS for PD is frequent, but high-quality evidence regarding DBS parameter adjustments is scarce, and the probability of sustained improvement is low. To improve this outcome, we propose an evidence- and experience-based approach to address speech impairment in STN-DBS that can be used in clinical practice.
Collapse
Affiliation(s)
- Bart E K S Swinnen
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronia Lotfalla
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Marije N Scholten
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Rosanne H N Prins
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Kelly M Goes
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefanie de Vries
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Joke J M Geytenbeek
- Department of Rehabilitation, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Joke M Dijk
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent J Odekerken
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter R Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Nip ISB, Burke MM, Kim Y. The Effects of Deep Brain Stimulation on Speech Motor Control in People With Parkinson's Disease. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:804-819. [PMID: 36780302 DOI: 10.1044/2022_jslhr-22-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PURPOSE Despite the overall benefits of deep brain stimulation (DBS) in Parkinson's disease (PD), its effects on speech production have been mixed when examined using auditory-perceptual and acoustic measures. This study investigated the effects of DBS on the lip and jaw kinematics during sentence production in individuals with dysarthria secondary to PD. METHOD Twenty-seven participants from three groups were included in the study: (a) individuals with PD and without DBS (PD group), (b) individuals with PD and with DBS (PD-DBS group), and (c) neurologically healthy control speakers (HC group). Lip and jaw movements during speech were recorded using optical motion capture and analyzed for path distance, speed, duration, articulatory stability, and interarticulator coordination. RESULTS The PD-DBS group showed (a) increased path distance compared with the PD and HC groups and (b) increased speed compared with the PD group but not the HC group. Both PD and PD-DBS groups exhibited lengthened sentence duration compared with the HC group. Articulatory stability was greater for the two PD groups, PD and PD-DBS, compared with the HC group. Spatial, but not temporal, coordination was lower for the PD group than for the other two groups. The only kinematic changes between the DBS on and off conditions within the PD-DBS group were increases in spatial coordination. CONCLUSIONS These data suggest that DBS primarily affects the amplitude scaling of articulatory movements, but not the temporal scaling, in individuals with PD. The findings are discussed with respect to the DBS-induced neural changes and their effects on speech motor control in PD.
Collapse
Affiliation(s)
- Ignatius S B Nip
- School of Speech, Language, and Hearing Sciences, San Diego State University, CA
| | - Mathes M Burke
- School of Speech, Language, and Hearing Sciences, San Diego State University, CA
| | - Yunjung Kim
- School of Communication Science and Disorders, Florida State University, Tallahassee
| |
Collapse
|
6
|
Efficacy of short pulse and conventional deep brain stimulation in Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2023; 44:815-825. [PMID: 36383263 DOI: 10.1007/s10072-022-06484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a common treatment for Parkinson's disease. However, the clinical efficacy of short pulse width DBS (spDBS) compared with conventional DBS (cDBS) is still unknown. OBJECTIVE This meta-analysis investigated the effectiveness of spDBS versus cDBS in patients with PD. METHODS Four databases (PubMed, Cochrane, Web of Science, and Embase) were independently searched until October 2021 by two reviewers. We utilized the following scales and items: therapeutic windows (TW), efficacy threshold, side effect threshold, Movement Disorder Society-Sponsored Revision Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III off-medication score, Speech Intelligence Test (SIT), and Freezing of Gait Questionnaire (FOG-Q). RESULTS The analysis included seven studies with a total of 87 patients. The results indicated that spDBS significantly widened the therapeutic windows (0.99, 95% CI = 0.61 to 1.38) while increasing the threshold amplitudes of side effects (2.25, 95% CI = 1.69 to 2.81) and threshold amplitudes of effects (1.60, 95% CI = 0.84 to 2.36). There was no statistically significant difference in UPDRS part III, SIT, and FOG-Q scores between spDBS and cDBS groups, suggesting that treatment with both cDBS and spDBS may result in similar effects of improved dysarthria and gait disorders. CONCLUSIONS Compared with cDBS, spDBS is effective in expanding TW. Both types of deep brain stimulation resulted in improved gait disorders and speech intelligibility.
Collapse
|
7
|
Senthinathan A, Adams S, Page AD, Jog M. Speech Intensity Response to Altered Intensity Feedback in Individuals With Parkinson's Disease. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2261-2275. [PMID: 33830820 DOI: 10.1044/2021_jslhr-20-00278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose Hypophonia (low speech intensity) is the most common speech symptom experienced by individuals with Parkinson's disease (IWPD). Previous research suggests that, in IWPD, there may be abnormal integration of sensory information for motor production of speech intensity. In the current study, intensity of auditory feedback was systematically manipulated (altered in both positive and negative directions) during sensorimotor conditions that are known to modulate speech intensity in everyday contexts in order to better understand the role of auditory feedback for speech intensity regulation. Method Twenty-six IWPD and 24 neurologically healthy controls were asked to complete the following tasks: converse with the experimenter, start vowel production, and read sentences at a comfortable loudness, while hearing their own speech intensity randomly altered. Altered intensity feedback conditions included 5-, 10-, and 15-dB reductions and increases in the feedback intensity. Speech tasks were completed in no noise and in background noise. Results IWPD displayed a reduced response to the altered intensity feedback compared to control participants. This reduced response was most apparent when participants were speaking in background noise. Specific task-based differences in responses were observed such that the reduced response by IWPD was most pronounced during the conversation task. Conclusions The current study suggests that IWPD have abnormal processing of auditory information for speech intensity regulation, and this disruption particularly impacts their ability to regulate speech intensity in the context of speech tasks with clear communicative goals (i.e., conversational speech) and speaking in background noise.
Collapse
Affiliation(s)
| | - Scott Adams
- Department of Health and Rehabilitation Sciences, Western University, London, Ontario, Canada
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Allyson D Page
- Department of Health and Rehabilitation Sciences, Western University, London, Ontario, Canada
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Sarac ET, Yilmaz A, Aydinli FE, Yildizgoren MT, Okuyucu EE, Okuyucu S, Akakin A. Investigating the effects of subthalamic Nucleus-Deep brain stimulation on the voice quality. Somatosens Mot Res 2020; 37:157-164. [PMID: 32397796 DOI: 10.1080/08990220.2020.1761317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Deep brain stimulation (DBS) is a standard surgical treatment method which is generally applied to subthalamic nucleus in Parkinson's patients in cases where medical treatment is insufficient in treating the motor symptoms. It is known that Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) treats many motor symptoms. However, the results of studies on speech and voice vary. The aim of the study is analysing the effect of STN-DBS on the characteristics of voice.Materials/methods: A total of 12 patients, (8 male-4 female) with an age average of 58.8 ± 9.6, who have been applied DBS surgery on STN included in the study. The voice recordings of the patients have been done prior to surgery and 6 months after the surgery. The evaluation of voice has been carried out through the instrumental method. The patients' voice recordings of the /a,e,i/ vowels have been done. The obtained recordings were evaluated by the Praat programme and the effects on jhitter, shimmer, fundamental frequency (F0) and noise harmonic rate (NHR) were analysed.Results: Numerical values of F0 of all female participants have been decreased for all of the vowels postoperatively. In the females; jhitter and fraction parameters were found to be significantly different (0.056 and 0.017, perspectively) for the vowel /e/. In addition, p values in the shimmer for vowels /e,i/ were thought to be clinically significant (.087, .079 and .076) respectively. All these changes in second measurements were found to indicate worsening vocal quality after the DBS in females. In males, there is not any significant difference observed between two measures in any of the parameters of any vowels.Conclusions: Acoustic voice quality deteriorated after STN-DBS predominantly for females however this deterioration was not prominent audio-perceptually. This finding commented as a result of the fact that that voice quality deviance of the participants was not severe.
Collapse
Affiliation(s)
- Elif Tugba Sarac
- Faculty of Medicine, Audiology Department, Mustafa Kemal University, Hatay, Turkey
| | | | | | | | - Emine Esra Okuyucu
- Faculty of Medicine, Audiology Department, Mustafa Kemal University, Hatay, Turkey
| | - Semsettin Okuyucu
- Faculty of Medicine, Audiology Department, Mustafa Kemal University, Hatay, Turkey
| | | |
Collapse
|
9
|
Murris SR, Arsenault JT, Vanduffel W. Frequency- and State-Dependent Network Effects of Electrical Stimulation Targeting the Ventral Tegmental Area in Macaques. Cereb Cortex 2020; 30:4281-4296. [PMID: 32279076 PMCID: PMC7325806 DOI: 10.1093/cercor/bhaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
The ventral tegmental area (VTA) is a midbrain structure at the heart of the dopaminergic system underlying adaptive behavior. Endogenous firing rates of dopamine cells in the VTA vary from fast phasic bursts to slow tonic activity. Artificial perturbations of the VTA, through electrical or optogenetic stimulation methods, generate different and sometimes even contrasting behavioral outcomes depending on stimulation parameters such as frequency, amplitude, and pulse width. Here, we investigate the global functional effects of electrical stimulation frequency (10, 20, 50, and 100 Hz) of the VTA in rhesus monkeys. We stimulated 2 animals with chronic electrodes, either awake or anesthetized, while concurrently acquiring whole-brain functional magnetic resonance imaging (fMRI) signals. In the awake state, activity as a function of stimulation frequency followed an inverted U-shape in many cortical and subcortical structures, with highest activity observed at 20 and 50 Hz and lower activity at 10 and 100 Hz. Under anesthesia, the hemodynamic responses in connected brain areas were slightly positive at 10 Hz stimulation, but decreased linearly as a function of higher stimulation frequencies. A speculative explanation for the remarkable frequency dependence of stimulation-induced fMRI activity is that the VTA makes use of different frequency channels to communicate with different postsynaptic sites.
Collapse
Affiliation(s)
- Sjoerd R Murris
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - John T Arsenault
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|