1
|
Ghumra D, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD, Doherty BM, Magrecki JP, Brody DL, Esparza TJ, O’Halloran JA, Presti RM, Bricker TL, Boon ACM, Yuede CM, Cirrito JR, Chakrabarty RK. Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care. ACS Sens 2023; 8:3023-3031. [PMID: 37498298 PMCID: PMC10463275 DOI: 10.1021/acssensors.3c00512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.
Collapse
Affiliation(s)
- Dishit
P. Ghumra
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Nishit Shetty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin R. McBrearty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Joseph V. Puthussery
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin J. Sumlin
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Woodrow D. Gardiner
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Brookelyn M. Doherty
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Jordan P. Magrecki
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - David L. Brody
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
- Department
of Neurology, Uniformed Services University
of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thomas J. Esparza
- National
Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, United States
| | - Jane A. O’Halloran
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Rachel M. Presti
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Traci L. Bricker
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Adrianus C. M. Boon
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Departments
Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carla M. Yuede
- Department
of Psychiatry, Washington University School
of Medicine, Campus Box
8134, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - John R. Cirrito
- Department
of Neurology, Hope Center for Neurological Disease, Knight Alzheimer’s
Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | - Rajan K. Chakrabarty
- Center
for Aerosol Science and Engineering, Department of Energy, Environmental
and Chemical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Investigating the Use of SARS-CoV-2 (COVID-19) Odor Expression as a Non-Invasive Diagnostic Tool-Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040707. [PMID: 36832195 PMCID: PMC9955788 DOI: 10.3390/diagnostics13040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been enormous interest in the development of measures that would allow for the swift detection of the disease. The rapid screening and preliminary diagnosis of SARS-CoV-2 infection allow for the instant identification of possibly infected individuals and the subsequent mitigation of the disease spread. Herein, the detection of SARS-CoV-2-infected individuals was explored using noninvasive sampling and low-preparatory-work analytical instrumentation. Hand odor samples were obtained from SARS-CoV-2-positive and -negative individuals. The volatile organic compounds (VOCs) were extracted from the collected hand odor samples using solid phase microextraction (SPME) and analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Sparse partial least squares discriminant analysis (sPLS-DA) was used to develop predictive models using the suspected variant sample subsets. The developed sPLS-DA models performed moderately (75.8% (±0.4) accuracy, 81.8% sensitivity, 69.7% specificity) at distinguishing between SARS-CoV-2-positive and negative -individuals based on the VOC signatures alone. Potential markers for distinguishing between infection statuses were preliminarily acquired using this multivariate data analysis. This work highlights the potential of using odor signatures as a diagnostic tool and sets the groundwork for the optimization of other rapid screening sensors such as e-noses or detection canines.
Collapse
|
3
|
Tan C, Wang S, Yang H, Huang Q, Li S, Liu X, Ye H, Zhang G. Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4024. [PMID: 36432307 PMCID: PMC9697324 DOI: 10.3390/nano12224024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural and performance analysis. We determine the carrier mobility of hydrogenated boron phosphide, reveal the effect of structural and material parameters on resonance frequencies, and discuss the variation of the electric field at the two tips. The results suggest that the mobilities of electrons for hydrogenated BP monolayer in the armchair and zigzag directions are 0.51 and 94.4 cm2·V-1·s-1, whereas for holes, the values are 136.8 and 175.15 cm2·V-1·s-1. Meanwhile, the transmission spectra of the bowtie triangle ring microstructure can be controlled by adjusting the length of the bowtie triangle ring microstructure and carrier density of hydrogenated BP. With the increasing length, the transmission spectrum has a red-shift and the electric field at the tips of equilateral triangle rings is significantly weakened. Furthermore, the theoretical sensitivity of the BTR structure reaches 100 GHz/RIU, which is sufficient to determine healthy and COVID-19-infected individuals. Our findings may open up new avenues for promising applications in the rapid diagnosis of COVID-19.
Collapse
Affiliation(s)
- Chunjian Tan
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaogang Wang
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiru Yang
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianming Huang
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shizhen Li
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Liu
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Ye
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoqi Zhang
- Electronic Components, Technology and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
4
|
Sukul P, Trefz P, Schubert JK, Miekisch W. Advanced setup for safe breath sampling and patient monitoring under highly infectious conditions in the clinical environment. Sci Rep 2022; 12:17926. [PMID: 36289276 PMCID: PMC9606119 DOI: 10.1038/s41598-022-22581-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Being the proximal matrix, breath offers immediate metabolic outlook of respiratory infections. However, high viral load in exhalations imposes higher transmission risk that needs improved methods for safe and repeatable analysis. Here, we have advanced the state-of-the-art methods for real-time and offline mass-spectrometry based analysis of exhaled volatile organic compounds (VOCs) under SARS-CoV-2 and/or similar respiratory conditions. To reduce infection risk, the general experimental setups for direct and offline breath sampling are modified. Certain mainstream and side-stream viral filters are examined for direct and lab-based applications. Confounders/contributions from filters and optimum operational conditions are assessed. We observed immediate effects of infection safety mandates on breath biomarker profiles. Main-stream filters induced physiological and analytical effects. Side-stream filters caused only systematic analytical effects. Observed substance specific effects partly depended on compound's origin and properties, sampling flow and respiratory rate. For offline samples, storage time, -conditions and -temperature were crucial. Our methods provided repeatable conditions for point-of-care and lab-based breath analysis with low risk of disease transmission. Besides breath VOCs profiling in spontaneously breathing subjects at the screening scenario of COVID-19/similar test centres, our methods and protocols are applicable for moderately/severely ill (even mechanically-ventilated) and highly contagious patients at the intensive care.
Collapse
Affiliation(s)
- Pritam Sukul
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Phillip Trefz
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jochen K. Schubert
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Wolfram Miekisch
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
6
|
Sengupta R, Khand H, Sarusi G. Terahertz Impedance Spectroscopy of Biological Nanoparticles by a Resonant Metamaterial Chip for Breathalyzer-Based COVID-19 Prompt Tests. ACS APPLIED NANO MATERIALS 2022; 5:5803-5812. [PMID: 37552719 PMCID: PMC9004291 DOI: 10.1021/acsanm.2c00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 06/16/2023]
Abstract
We propose a tested, sensitive, and prompt COVID-19 breath screening method that takes less than 1 min. The method is nonbiological and is based on the detection of a shift in the resonance frequency of a nanoengineered inductor-capacitor (LC) resonant metamaterial chip, caused by viruses and mainly related exhaled particles, when performing terahertz spectroscopy. The chip consists of thousands of microantennas arranged in an array and enclosed in a plastic breathalyzer-like disposable capsule kit. After an appreciable agreement between numerical simulations (COMSOL and CST) and experimental results was reached using our metamaterial design, low-scale clinical trials were conducted with asymptomatic and symptomatic coronavirus patients and healthy individuals. It is shown that coronavirus-positive individuals are effectively screened upon observation of a shift in the transmission resonance frequency of about 1.5-9 GHz, which is diagnostically different from the resonance shift of healthy individuals who display a 0-1.5 GHz shift. The initial results of screening coronavirus patients yielded 88% agreement with the real-time quantitative polymerase chain reaction (RT-qPCR) results (performed concurrently with the breath test) with an outcome of a positive predicted value of 87% and a negative predicted value of 88%.
Collapse
Affiliation(s)
- Rudrarup Sengupta
- Department of Photonics and Electro-Optics Engineering,
School of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Beer Sheva 8410501, Israel
| | - Heena Khand
- Department of Photonics and Electro-Optics Engineering,
School of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Beer Sheva 8410501, Israel
| | - Gabby Sarusi
- Department of Photonics and Electro-Optics Engineering,
School of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Beer Sheva 8410501, Israel
| |
Collapse
|