1
|
Lade H, Joo HS, Kim JS. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1378. [PMID: 36290036 PMCID: PMC9598170 DOI: 10.3390/antibiotics11101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful human pathogens with the potential to cause significant morbidity and mortality. MRSA has acquired resistance to almost all β-lactam antibiotics, including the new-generation cephalosporins, and is often also resistant to multiple other antibiotic classes. The expression of penicillin-binding protein 2a (PBP2a) is the primary basis for β-lactams resistance by MRSA, but it is coupled with other resistance mechanisms, conferring resistance to non-β-lactam antibiotics. The multiplicity of resistance mechanisms includes target modification, enzymatic drug inactivation, and decreased antibiotic uptake or efflux. This review highlights the molecular basis of resistance to non-β-lactam antibiotics recommended to treat MRSA infections such as macrolides, lincosamides, aminoglycosides, glycopeptides, oxazolidinones, lipopeptides, and others. A thorough understanding of the molecular and biochemical basis of antibiotic resistance in clinical isolates could help in developing promising therapies and molecular detection methods of antibiotic resistance.
Collapse
Affiliation(s)
- Harshad Lade
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| |
Collapse
|
2
|
Linezolid-resistant Staphylococcus capitis isolate. Infect Dis Now 2021; 52:176-177. [PMID: 34757234 DOI: 10.1016/j.idnow.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
|
3
|
Gostev V, Leyn S, Kruglov A, Likholetova D, Kalinogorskaya O, Baykina M, Dmitrieva N, Grigorievskaya Z, Priputnevich T, Lyubasovskaya L, Gordeev A, Sidorenko S. Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci. Front Microbiol 2021; 12:661798. [PMID: 34589061 PMCID: PMC8473885 DOI: 10.3389/fmicb.2021.661798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) for a long time were considered avirulent constituents of the human and warm-blooded animal microbiota. However, at present, S. epidermidis, S. haemolyticus, and S. hominis are recognized as opportunistic pathogens. Although linezolid is not registered for the treatment of CoNS infections, it is widely used off-label, promoting emergence of resistance. Bioinformatic analysis based on maximum-likelihood phylogeny and Bayesian clustering of the CoNS genomes obtained in the current study and downloaded from public databases revealed the existence of international linezolid-resistant lineages, each of which probably had a common predecessor. Linezolid-resistant S. epidermidis sequence-type (ST) 2 from Russia, France, and Germany formed a compact group of closely related genomes with a median pairwise single nucleotide polymorphism (SNP) difference of fewer than 53 SNPs, and a common ancestor of this lineage appeared in 1998 (1986-2006) before introduction of linezolid in practice. Another compact group of linezolid-resistant S. epidermidis was represented by ST22 isolates from France and Russia with a median pairwise SNP difference of 40; a common ancestor of this lineage appeared in 2011 (2008-2013). Linezolid-resistant S. hominis ST2 from Russia, Germany, and Brazil also formed a group with a high-level genome identity with median 25.5 core-SNP differences; the appearance of the common progenitor dates to 2003 (1996-2012). Linezolid-resistant S. hominis isolates from Russia demonstrated associated resistance to teicoplanin. Analysis of a midpoint-rooted phylogenetic tree of the group confirmed the genetic proximity of Russian and German isolates; Brazilian isolates were phylogenetically distant. repUS5-like plasmids harboring cfr were detected in S. hominis and S. haemolyticus.
Collapse
Affiliation(s)
- Vladimir Gostev
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| | - Semen Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexander Kruglov
- Laboratory of Clinical Microbiology, National Agency for Clinical Pharmacology and Pharmacy, Moscow, Russia
| | - Daria Likholetova
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Kalinogorskaya
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
| | - Marina Baykina
- Laboratory of Clinical Microbiology, National Agency for Clinical Pharmacology and Pharmacy, Moscow, Russia
| | - Natalia Dmitrieva
- Department of Microbiology, N. N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Zlata Grigorievskaya
- Department of Microbiology, N. N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Tatiana Priputnevich
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Lyudmila Lyubasovskaya
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey Gordeev
- Department of Microbiology, Clinical Pharmacology and Epidemiology, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Sergey Sidorenko
- Department of Medical Microbiology and Molecular Epidemiology, Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
4
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shen T, Penewit K, Waalkes A, Xu L, Salipante SJ, Nath A, Werth BJ. Identification of a novel tedizolid resistance mutation in rpoB of MRSA after in vitro serial passage. J Antimicrob Chemother 2021; 76:292-296. [PMID: 33057715 DOI: 10.1093/jac/dkaa422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/13/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Tedizolid is an oxazolidinone antimicrobial with activity against Gram-positive bacteria, including MRSA. Tedizolid resistance is uncommon and tedizolid's capacity to select for cross-resistance to other antimicrobials is incompletely understood. The objective of this study was to further explore the phenotypic and genetic basis of tedizolid resistance in MRSA. METHODS We selected for tedizolid resistance in an MRSA laboratory strain, N315, by serial passage until an isolate with an MIC ≥1 log2 dilution above the breakpoint for resistance (≥2 mg/L) was recovered. This isolate was subjected to WGS and susceptibility to a panel of related and unrelated antimicrobials was tested in order to determine cross-resistance. Homology modelling was performed to evaluate the potential impact of the mutation on target protein function. RESULTS After 10 days of serial passage we recovered a phenotypically stable mutant with a tedizolid MIC of 4 mg/L. WGS revealed only one single nucleotide variant (A1345G) in rpoB, corresponding to amino acid substitution D449N. MICs of linezolid, chloramphenicol, retapamulin and quinupristin/dalfopristin increased by ≥2 log2 dilutions, suggesting the emergence of the so-called 'PhLOPSa' resistance phenotype. Susceptibility to other drugs, including rifampicin, was largely unchanged. Homology models revealed that the mutated residue of RNA polymerase would be unlikely to directly affect oxazolidinone action. CONCLUSIONS To the best of our knowledge, this is the first time that an rpoB mutation has been implicated in resistance to PhLOPSa antimicrobials. The mechanism of resistance remains unclear, but is likely indirect, involving σ-factor binding or other alterations in transcriptional regulation.
Collapse
Affiliation(s)
- Tianwei Shen
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Brian J Werth
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Folan SA, Marx KR, Tverdek FP, Raad I, Mulanovich VE, Tarrand JJ, Shelburne SA, Aitken SL. Clinical Outcomes Associated With Linezolid Resistance in Leukemia Patients With Linezolid-Resistant Staphylococcus epidermidis Bacteremia. Open Forum Infect Dis 2018; 5:ofy167. [PMID: 30090838 PMCID: PMC6061807 DOI: 10.1093/ofid/ofy167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background Coagulase-negative staphylococci, including Staphylococcus epidermidis, are the most common cause of bloodstream infection in cancer patients. Linezolid resistance is increasingly identified in S. epidermidis, but whether such resistance alters the clinical course of S. epidermidis infections is unknown. The purpose of this study was to assess the clinical impact of linezolid resistance in leukemia patients with S. epidermidis bloodstream infection. Methods This was a retrospective, single-center cohort study of all adult leukemia patients with S. epidermidis bacteremia treated with empiric linezolid between 2012 and 2015. The primary end point was adverse clinical outcome on day 3, defined as a composite of persistent bacteremia, fever, intensive care unit admission, or death. Fourteen- and 30-day mortality were also assessed. Results Eighty-two unique leukemia patients with S. epidermidis were identified. Linezolid resistance was identified in 33/82 (40%). Patients with linezolid-resistant S. epidermidis were significantly more likely to have persistent bacteremia (41% vs 7%; adjusted relative risk [aRR], 5.15; 95% confidence interval [CI], 1.63–16.30; P = .005); however, adverse short-term clinical outcomes overall were not more common among patients with linezolid-resistant S. epidermidis (61% vs 33%; aRR, 1.46; 95% CI, 0.92–2.32; P = .108). No differences were observed in 14- or 30-day mortality. Conclusions Leukemia patients with linezolid-resistant S. epidermidis bacteremia who were treated with linezolid were significantly more likely to have persistent bacteremia compared with those with linezolid-sensitive isolates. Interventions to limit the clinical impact of linezolid-resistant S. epidermidis are warranted.
Collapse
Affiliation(s)
- Stephanie A Folan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kayleigh R Marx
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank P Tverdek
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Issam Raad
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor E Mulanovich
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Tarrand
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, Texas
| |
Collapse
|