1
|
Madhusudanan A, Iddon C, Cevik M, Naismith JH, Fitzgerald S. Non-pharmaceutical interventions for COVID-19: a systematic review on environmental control measures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20230130. [PMID: 37611631 PMCID: PMC10446906 DOI: 10.1098/rsta.2023.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 08/25/2023]
Abstract
The purpose of this review was to identify the effectiveness of environmental control (EC) non-pharmaceutical interventions (NPIs) in reducing transmission of SARS-CoV-2 through conducting a systematic review. EC NPIs considered in this review are room ventilation, air filtration/cleaning, room occupancy, surface disinfection, barrier devices, [Formula: see text] monitoring and one-way-systems. Systematic searches of databases from Web of Science, Medline, EMBASE, preprint servers MedRxiv and BioRxiv were conducted in order to identify studies reported between 1 January 2020 and 1 December 2022. All articles reporting on the effectiveness of ventilation, air filtration/cleaning, room occupancy, surface disinfection, barrier devices, [Formula: see text] monitoring and one-way systems in reducing transmission of SARS-CoV-2 were retrieved and screened. In total, 13 971 articles were identified for screening. The initial title and abstract screening identified 1328 articles for full text review. Overall, 19 references provided evidence for the effectiveness of NPIs: 12 reported on ventilation, 4 on air cleaning devices, 5 on surface disinfection, 6 on room occupancy and 1 on screens/barriers. No studies were found that considered the effectiveness of [Formula: see text] monitoring or the implementation of one-way systems. Many of these studies were assessed to have critical risk of bias in at least one domain, largely due to confounding factors that could have affected the measured outcomes. As a result, there is low confidence in the findings. Evidence suggests that EC NPIs of ventilation, air cleaning devices and reduction in room-occupancy may have a role in reducing transmission in certain settings. However, the evidence was usually of low or very low quality and certainty, and hence the level of confidence ascribed to this conclusion is low. Based on the evidence found, it was not possible to draw any specific conclusions regarding the effectiveness of surface disinfection and the use of barrier devices. From these results, we further conclude that community agreed standards for well-designed epidemiological studies with low risk of bias are needed. Implementation of such standards would enable more confident assessment in the future of the effectiveness of EC NPIs in reducing transmission of SARS-CoV-2 and other pathogens in real-world settings. This article is part of the theme issue 'The effectiveness of non-pharmaceutical interventions on the COVID-19 pandemic: the evidence'.
Collapse
Affiliation(s)
| | - Christopher Iddon
- Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT, London, UK
| | - Muge Cevik
- Department of Infection and Global Health, School of Medicine, University of St Andrews, KY16 9TF, St Andrews, UK
| | | | - Shaun Fitzgerald
- Department of Engineering, University of Cambridge, CB2 1PZ, Cambridge, UK
| |
Collapse
|
2
|
Pereira AR, Braga DFO, Vassal M, Gomes IB, Simões M. Ultraviolet C irradiation: A promising approach for the disinfection of public spaces? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163007. [PMID: 36965719 DOI: 10.1016/j.scitotenv.2023.163007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Ultraviolet irradiation C (UVC) has emerged as an effective strategy for microbial control in indoor public spaces. UVC is commonly applied for air, surface, and water disinfection. Unlike common 254 nm UVC, far-UVC at 222 nm is considered non-harmful to human health, being safe for occupied spaces, and still effective for disinfection purposes. Therefore, and allied to the urgency to mitigate the current pandemic of SARS-CoV-2, an increase in UVC-based technology devices appeared in the market with levels of pathogens reduction higher than 99.9 %. This environmentally friendly technology has the potential to overcome many of the limitations of traditional chemical-based disinfection approaches. The novel UVC-based devices were thought to be used in public indoor spaces such as hospitals, schools, and public transport to minimize the risk of pathogens contamination and propagation, saving costs by reducing manual cleaning and equipment maintenance provided by manpower. However, a lack of information about UVC-based parameters and protocols for disinfection, and controversies regarding health and environmental risks still exist. In this review, fundamentals on UVC disinfection are presented. Furthermore, a deep analysis of UVC-based technologies available in the market for the disinfection of public spaces is addressed, as well as their advantages and limitations. This comprehensive analysis provides valuable inputs and strategies for the development of effective, reliable, and safe UVC disinfection systems.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Daniel F O Braga
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Mariana Vassal
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
de Oliveira SV, Neves FDD, dos Santos DC, Monteiro MBB, Schaufelberger MS, Motta BN, de Oliveira IP, Setúbal Destro Rodrigues MF, Franco ALDS, Cecatto RB. The effectiveness of phototherapy for surface decontamination against SARS-Cov-2. A systematic review. JOURNAL OF BIOPHOTONICS 2023; 16:e202200306. [PMID: 36560919 PMCID: PMC9880673 DOI: 10.1002/jbio.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.
Collapse
Affiliation(s)
- Susyane Vieira de Oliveira
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
| | | | | | | | | | | | | | | | | | - Rebeca Boltes Cecatto
- Post Graduate Program Biophotonics Applied to Health Sciences, Universidade Nove de Julho/UNINOVESao PauloBrazil
- Instituto do Cancer do Estado de Sao Paulo, School of Medicine of the University of Sao PauloSao PauloBrazil
| |
Collapse
|
4
|
Casini B, Tuvo B, Scarpaci M, Totaro M, Badalucco F, Briani S, Luchini G, Costa AL, Baggiani A. Implementation of an Environmental Cleaning Protocol in Hospital Critical Areas Using a UV-C Disinfection Robot. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4284. [PMID: 36901293 PMCID: PMC10001687 DOI: 10.3390/ijerph20054284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Improving the cleaning and disinfection of high-touch surfaces is one of the core components of reducing healthcare-associated infections. The effectiveness of an enhanced protocol applying UV-C irradiation for terminal room disinfection between two successive patients was evaluated. Twenty high-touch surfaces in different critical areas were sampled according to ISO 14698-1, both immediately pre- and post-cleaning and disinfection standard operating protocol (SOP) and after UV-C disinfection (160 sampling sites in each condition, 480 in total). Dosimeters were applied at the sites to assess the dose emitted. A total of 64.3% (103/160) of the sampling sites tested after SOP were positive, whereas only 17.5% (28/160) were positive after UV-C. According to the national hygienic standards for health-care setting, 9.3% (15/160) resulted in being non-compliant after SOP and only 1.2% (2/160) were non-compliant after UV-C disinfection. Operation theaters was the setting that resulted in being less compliant with the standard limit (≤15 colony-forming unit/24 cm2) after SOP (12%, 14/120 sampling sites) and where the UV-C treatment showed the highest effectiveness (1.6%, 2/120). The addition of UV-C disinfection to the standard cleaning and disinfection procedure had effective results in reducing hygiene failures.
Collapse
Affiliation(s)
- Beatrice Casini
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Benedetta Tuvo
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michela Scarpaci
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michele Totaro
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Federica Badalucco
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Silvia Briani
- Hospital Management, University Hospital of Pisa, 56126 Pisa, Italy
| | - Grazia Luchini
- Hospital Management, University Hospital of Pisa, 56126 Pisa, Italy
| | - Anna Laura Costa
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Angelo Baggiani
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Kumar A, Raj A, Gupta A, Gautam S, Kumar M, Bherwani H, Anshul A. Pollution free UV-C radiation to mitigate COVID-19 transmission. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:78-86. [PMID: 35936028 PMCID: PMC9345658 DOI: 10.1016/j.gr.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 06/02/2023]
Abstract
The high rate of transmission of the COVID-19 virus has brought various types of disinfection techniques, for instance, hydrogen peroxide vaporization, microwave generating steam, UV radiation, and dry heating, etc. to prevent the further transmission of the virus. The chemical-based techniques are predominantly used for sanitization of hands, buildings, hospitals, etc. However, these chemicals may affect the health of humans and the environment in unexplored aspects. Furthermore, the UV lamp-based radiation sanitization technique had been applied but has not gained larger acceptability owing to its limitation to penetrate different materials. Therefore, the optical properties of materials are especially important for the utilization of UV light on such disinfection applications. The germicidal or microorganism inactivation application of UV-C has only been in-use in a closed chamber, due to its harmful effect on human skin and the eye. However, it is essential to optimize UV for its use in an open environment for a larger benefit to mitigate the virus spread. In view of this, far UV-C (222 nm) based technology has emerged as a potential option for the sanitization in open areas and degradation of microorganisms present in aerosol during the working conditions. Hence, in the present review article, efforts have been made to evaluate the technical aspects of UV (under the different spectrum and wavelength ranges) and the control of COVID 19 virus spread in the atmosphere including the possibilities of the human body sanitization in working condition.
Collapse
Affiliation(s)
- Ashutosh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Abhishek Raj
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-NEERI, Delhi Zonal Centre, Naraina Industrial Area, New Delhi 110028, India
| | - Sneha Gautam
- Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, India
| | - Manish Kumar
- Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India
| | - Hemant Bherwani
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avneesh Anshul
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
7
|
Teng R, Ding Y, See KC. Use of Robots in Critical Care: Systematic Review. J Med Internet Res 2022; 24:e33380. [PMID: 35576567 PMCID: PMC9152725 DOI: 10.2196/33380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 01/01/2023] Open
Abstract
Background The recent focus on the critical setting, especially with the COVID-19 pandemic, has highlighted the need for minimizing contact-based care and increasing robotic use. Robotics is a rising field in the context of health care, and we sought to evaluate the use of robots in critical care settings. Objective Although robotic presence is prevalent in the surgical setting, its role in critical care has not been well established. We aimed to examine the uses and limitations of robots for patients who are critically ill. Methods This systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, Embase, IEEE Xplore, and ACM Library were searched from their inception to December 23, 2021. Included studies involved patients requiring critical care, both in intensive care units or high-dependency units, or settings that required critical care procedures (eg, intubation and cardiopulmonary resuscitation). Randomized trials and observational studies were included. Results A total of 33 studies were included. The greatest application of robots in the intensive care unit was in the field of telepresence, whereby robots proved advantageous in providing a reduced response time, earlier intervention, and lower mortality rates. Challenges of telepresence included regulatory and financial barriers. In therapy and stroke rehabilitation, robots achieved superior clinical outcomes safely. Robotic use in patient evaluation and assessment was mainly through ultrasound evaluation, obtaining satisfactory to superior results with the added benefits of remote assessment, time savings, and increased efficiency. Robots in drug dispensing and delivery increased efficiency and generated cost savings. All the robots had technological limitations and hidden costs. Conclusions Overall, our results show that robotic use in critical care settings is a beneficial, effective, and well-received intervention that delivers significant benefits to patients, staff, and hospitals. Looking ahead, it is necessary to form strong ethical and legislative frameworks and overcome various regulatory and financial barriers. Trial Registration PROSPERO International Prospective Register of Systematic Reviews CRD42021234162; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=234162
Collapse
Affiliation(s)
- Rachel Teng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yichen Ding
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kay Choong See
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
8
|
Zhang HL, Kelly BJ, David MZ, Lautenbach E, Huang E, Bekele S, Tolomeo P, Reesey E, Loughrey S, Pegues D, Ziegler MJ. SARS-CoV-2 RNA persists on surfaces following terminal disinfection of COVID-19 hospital isolation rooms. Am J Infect Control 2022; 50:462-464. [PMID: 35108581 PMCID: PMC8801058 DOI: 10.1016/j.ajic.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
Abstract
We evaluated the effect of terminal cleaning on SARS-CoV-2 RNA contamination of COVID-19 isolation rooms in an acute care hospital. SARS-CoV-2 RNA was detected on 32.1% of room surfaces after cleaning; the odds of contamination increased with month. The prevalence of elevated high-touch surface contamination was lower in terminally cleaned rooms than patient-occupied rooms.
Collapse
Affiliation(s)
- Helen L Zhang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| | - Brendan J Kelly
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Elizabeth Huang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Selamawit Bekele
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Pam Tolomeo
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emily Reesey
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sean Loughrey
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David Pegues
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Health Care Epidemiology, Infection Prevention and Control, University of Pennsylvania Health System, Philadelphia, PA
| | - Matthew J Ziegler
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Health Care Epidemiology, Infection Prevention and Control, University of Pennsylvania Health System, Philadelphia, PA
| |
Collapse
|
9
|
Russo C, Bartolini D, Corbucci C, Stabile AM, Rende M, Gioiello A, Cruciani G, Mencacci A, Galli F, Pietrella D. Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413019. [PMID: 34948629 PMCID: PMC8701089 DOI: 10.3390/ijerph182413019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Background: Healthcare-associated infections caused by multi-drug resistant (MDR) pathogens are associated with increased mortality and morbidity among hospitalized patients. Inanimate surfaces, and in particular high-touch surfaces, have often been described as the source for outbreaks of nosocomial infections. The present work aimed to evaluate the efficacy of a last-generation mobile (robotic) irradiation UV-C light device R2S on MDR microorganisms in inanimate surfaces and its translation to hospital disinfection. Methods: The efficacy of R2S system was evaluated in environmental high-touch surfaces of two separate outpatient rooms of Perugia Hospital in Italy. The static UV-C irradiation effect was investigated on both the bacterial growth of S. aureus, MRSA, P. aeruginosa, and K. pneumoniae KPC and photoreactivation. The antimicrobial activity was also tested on different surfaces, including glass, steel, and plastic. Results: In the environmental tests, the R2S system decreased the number of bacteria, molds, and yeasts of each high-touch spot surface (HTSs) compared with manual sanitization. UV-C light irradiation significantly inhibits in vitro bacterial growth, also preventing photoreactivation. UV-C light bactericidal activity on MDR microorganisms is affected by the type of materials of inanimate surfaces. Conclusions: The last-generation mobile R2S system is a more reliable sanitizing procedure compared with its manual counterpart.
Collapse
Affiliation(s)
- Carla Russo
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (C.R.); (A.M.)
| | - Desirée Bartolini
- Unit of Human, Clinical and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (D.B.); (A.M.S.); (M.R.)
| | - Cristina Corbucci
- Microbiology Unit, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy;
| | - Anna Maria Stabile
- Unit of Human, Clinical and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (D.B.); (A.M.S.); (M.R.)
| | - Mario Rende
- Unit of Human, Clinical and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (D.B.); (A.M.S.); (M.R.)
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Antonella Mencacci
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (C.R.); (A.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy;
- Correspondence: (F.G.); (D.P.); Tel.: +39-075-5858051 (D.P.)
| | - Donatella Pietrella
- Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (C.R.); (A.M.)
- Correspondence: (F.G.); (D.P.); Tel.: +39-075-5858051 (D.P.)
| |
Collapse
|
10
|
Sellera FP, Sabino CP, Cabral FV, Ribeiro MS. A systematic scoping review of ultraviolet C (UVC) light systems for SARS-CoV-2 inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021; 8:100068. [PMID: 34549200 PMCID: PMC8444477 DOI: 10.1016/j.jpap.2021.100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
A significant amount of epidemiological evidence has underlined that human-to-human transmission due to close contacts is considered the main pathway of transmission, however since the SARS-CoV-2 can also survive in aerosols, water, and surfaces, the development and implementation of effective decontamination strategies are urgently required. In this regard, ultraviolet germicidal irradiation (UVGI) using ultraviolet C (UVC) has been proposed to disinfect different environments and surfaces contaminated by SARS-CoV-2. Herein, we performed a systematic scoping review strictly focused on peer-reviewed studies published in English that reported experimental results of UVC-based technologies against the SARS-CoV-2 virus. Studies were retrieved from PubMed and the Web of Science database. After our criterious screening, we identified 13 eligible articles that used UVC-based systems to inactivate SARS-CoV-2. We noticed the use of different UVC wavelengths, technologies, and light doses. The initial viral titer was also heterogeneous among studies. Most studies reported virus inactivation in well plates, even though virus persistence on N95 respirators and different surfaces were also evaluated. SARS-CoV-2 inactivation reached from 90% to 100% depending on experimental conditions. We concluded that there is sufficient evidence to support the use of UVC-based technologies against SARS-CoV-2. However, appropriate implementation is required to guarantee the efficacy and safety of UVC strategies to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil
| | | | - Fernanda V Cabral
- Center for Lasers and Applications, IPEN-CNEN, São Paulo, SP, Brazil
| | - Martha S Ribeiro
- Center for Lasers and Applications, IPEN-CNEN, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Sang AWY, Moo CG, P. Samarakoon SMB, Muthugala MAVJ, Elara MR. Design of a Reconfigurable Wall Disinfection Robot. SENSORS (BASEL, SWITZERLAND) 2021; 21:6096. [PMID: 34577301 PMCID: PMC8472289 DOI: 10.3390/s21186096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
During a viral outbreak, such as COVID-19, autonomously operated robots are in high demand. Robots effectively improve the environmental concerns of contaminated surfaces in public spaces, such as airports, public transport areas and hospitals, that are considered high-risk areas. Indoor spaces walls made up most of the indoor areas in these public spaces and can be easily contaminated. Wall cleaning and disinfection processes are therefore critical for managing and mitigating the spread of viruses. Consequently, wall cleaning robots are preferred to address the demands. A wall cleaning robot needs to maintain a close and consistent distance away from a given wall during cleaning and disinfection processes. In this paper, a reconfigurable wall cleaning robot with autonomous wall following ability is proposed. The robot platform, Wasp, possess inter-reconfigurability, which enables it to be physically reconfigured into a wall-cleaning robot. The wall following ability has been implemented using a Fuzzy Logic System (FLS). The design of the robot and the FLS are presented in the paper. The platform and the FLS are tested and validated in several test cases. The experimental outcomes validate the real-world applicability of the proposed wall following method for a wall cleaning robot.
Collapse
Affiliation(s)
| | | | | | - M. A. Viraj J. Muthugala
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore; (A.W.Y.S.); (C.G.M.); (S.M.B.P.S.); (M.R.E.)
| | | |
Collapse
|