1
|
Peña JE, Corbett BF, Tamminga CA, Bhatnagar S, Hitti FL. Investigating Resistance to Antidepressants in Animal Models. Neuroscience 2024; 548:69-80. [PMID: 38697464 DOI: 10.1016/j.neuroscience.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.
Collapse
Affiliation(s)
- Julianna E Peña
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
2
|
Bernardus Saayman JL, Harvey BH, Wegener G, Brink CB. Sildenafil, alone and in combination with imipramine or escitalopram, display antidepressant-like effects in an adrenocorticotropic hormone-induced (ACTH) rodent model of treatment-resistant depression. Eur J Pharmacol 2024; 969:176434. [PMID: 38458412 DOI: 10.1016/j.ejphar.2024.176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) represents a challenge with high prevalence and limited effectiveness of existing treatments, particularly in cases of treatment-resistant depression (TRD). Innovative strategies and alternative drug targets are therefore necessary. Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, is known to exert neuroplastic, anti-inflammatory, and antioxidant properties, and is a promising antidepressant drug candidate. AIM To investigate whether sildenafil monotherapy or in combination with a known antidepressant, can elicit antidepressant-like effects in an adrenocorticotropic hormone (ACTH)-induced rodent model of TRD. METHODS ACTH-naïve and ACTH-treated male Sprague-Dawley (SD) rats received various sub-acute drug treatments, followed by behavioural tests and biochemical analyses conversant with antidepressant actions. RESULTS Sub-chronic ACTH treatment induced significant depressive-like behaviour in rats, evidenced by increased immobility during the forced swim test (FST). Sub-acute sildenafil (10 mg/kg) (SIL-10) (but not SIL-3), and combinations of imipramine (15 mg/kg) (IMI-15) and sildenafil (3 mg/kg) (SIL-3) or escitalopram (15 mg/kg) (ESC-15) and SIL-3, exhibited significant antidepressant-like effects. ACTH treatment significantly elevated hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin, norepinephrine, kynurenic acid (KYNUA), quinolinic acid (QUINA), and glutathione. The various mono- and combined treatments significantly reversed some of these changes, whereas IMI-15 + SIL-10 significantly increased glutathione disulfide levels. ESC-15 + SIL-3 significantly reduced plasma corticosterone levels. CONCLUSION This study suggests that sildenafil shows promise as a treatment for TRD, either as a stand-alone therapy or in combination with a traditional antidepressant. The neurobiological mechanism underlying the antidepressant-like effects of the different sildenafil mono- and combination therapies reflects a multimodal action and cannot be explained in full by changes in the individually measured biomarker levels.
Collapse
Affiliation(s)
- Juandré Lambertus Bernardus Saayman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian Herbert Harvey
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience on Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch, 7700, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Christiaan Beyers Brink
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Running from depression: the antidepressant-like potential of prenatal and pre-pubertal exercise in adolescent FSL rats exposed to an early-life stressor. Acta Neuropsychiatr 2023:1-15. [PMID: 37969008 DOI: 10.1017/neu.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE We aimed to answer the questions of whether early-life (perinatal and/or juvenile) exercise can induce antidepressant-like effects in a validated rodent model of depression, and whether such early-life intervention could prevent or reverse the adverse effects of early-life stress in their offspring. METHODS Male and female Flinders sensitive line rats born to a dam that exercised during gestation, or not, were either maternally separated between PND02 and 16 and weaned on PND17 or not. Half of these animals then underwent a fourteen-day low-intensity exercise regimen from PND22. Baseline depressive-like behaviour was assessed on PND21 and then reassessed on PND36, whereafter hippocampal monoamine levels, redox state markers and metabolic markers relevant to mitochondrial function were measured. RESULTS Pre-pubertal exercise was identified as the largest contributing factor to the observed effects, where it decreased immobility time in the FST by 6%, increased time spent in the open arms of the EPM by 9%. Hippocampal serotonin and norepinephrine levels were also increased by 35% and 26%, respectively, whilst nicotinic acid was significantly decreased. CONCLUSION These findings suggest that pre-pubertal low-intensity exercise induces beneficial biological alterations that could translate into antidepressant behaviour in genetically susceptible individuals.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Genetically predisposed and resilient animal models of depression reveal divergent responses to early-life adversity. Acta Neuropsychiatr 2023:1-13. [PMID: 37592838 DOI: 10.1017/neu.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Early-life adversity (ELA) is one of the strongest predictors of childhood depression that may be exacerbated by a genetic predisposition to develop depression. We therefore investigated the bio-behavioural effects of an early-life stressor in an accepted rodent model of depression. METHODS The Flinders sensitive line (FSL) and resistant line (FRL) rats were subjected to an early-life stressor, whereafter their bio-behavioural response during pubertal onset was evaluated. Male and female pups were maternally separated for 3 h per day from postnatal day 02 (PND02) to 17, when they were also weaned. Control animals were left undisturbed, until weaning on PND21. Depressive-like behaviour was analysed on PND21 and reassessed on PND36. Hippocampal monoamine levels, markers of oxidative stress and metabolic markers implicating mitochondrial function were also measured. RESULTS On PND21, the non-maternal separation and early weaning (non-MSEW) FSL rats spent 10% more time mobile than their FRL controls in the tail suspension test (TST) yet displayed increased depressive-like behaviour in the forced swim test (FST) on PND36. This depressive-like behaviour coincided with increased hippocampal norepinephrine levels, serotonin turnover and a dysfunctional redox state. Maternal separation and early weaning (MSEW) appeared to initially reduce early-life (PND21) depressive-like behaviour in the TST but then induced depressive-like behaviour on PND36 and increased norepinephrine levels more profoundly in the FRL rats. CONCLUSION These findings highlight the need to further investigate the stress response pathway in these animals and that the absence or presence of genetic susceptibility may influence the presentation of ELA effects.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Lubbe C, Meyer LCR, Kohn TA, Harvey BH, Wolmarans DW. The pathophysiology of rhabdomyolysis in ungulates and rats: towards the development of a rodent model of capture myopathy. Vet Res Commun 2023; 47:361-371. [PMID: 36334218 DOI: 10.1007/s11259-022-10030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Capture myopathy (CM), which is associated with the capture and translocation of wildlife, is a life-threatening condition that causes noteworthy morbidity and mortality in captured animals. Such wildlife deaths have a significant impact on nature conservation efforts and the socio-economic wellbeing of communities reliant on ecotourism. Several strategies are used to minimise the adverse consequences associated with wildlife capture, especially in ungulates, but no successful preventative or curative measures have yet been developed. The primary cause of death in wild animals diagnosed with CM stems from kidney or multiple organ failure as secondary complications to capture-induced rhabdomyolysis. Ergo, the development of accurate and robust model frameworks is vital to improve our understanding of CM. Still, since CM-related complications are borne from biological and behavioural factors that may be unique to wildlife, e.g. skeletal muscle architecture or flighty nature, certain differences between the physiology and stress responses of wildlife and rodents need consideration in such endeavours. Therefore, the purpose of this review is to summarise some of the major etiological and pathological mechanisms of the condition as it is observed in wildlife and what is currently known of CM-like syndromes, i.e. rhabdomyolysis, in laboratory rats. Additionally, we will highlight some key aspects for consideration in the development and application of potential future rodent models.
Collapse
Affiliation(s)
- Crystal Lubbe
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Leith C R Meyer
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Tertius A Kohn
- Center for Veterinary Wildlife Research and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Western Cape, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
- South African Medical Research Council Unit On Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Western Cape, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
6
|
Decreased sensitivity to antidepressant drugs in Wistar Hannover rats submitted to two animal models of depression. Acta Neuropsychiatr 2023; 35:35-49. [PMID: 36101010 DOI: 10.1017/neu.2022.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Wistar Hannover rat (WHR) is a strain commonly used for toxicity studies but rarely used in studies investigating depression neurobiology. In this study, we aimed to characterise the behavioural responses of WHR to acute and repeated antidepressant treatments upon exposure to the forced swim test (FST) or learned helplessness (LH) test. WHR were subjected to forced swimming pre-test and test with antidepressant administration (imipramine, fluoxetine, or escitalopram) at 0, 5 h and 23 h after pre-test. WHR displayed high immobility in the test compared to unstressed controls (no pre-swim) and failed to respond to the antidepressants tested. The effect of acute and repeated treatment (imipramine, fluoxetine, escitalopram or s-ketamine) was then tested in animals not previously exposed to pre-test. Only imipramine (20 mg/kg, 7 days) and s-ketamine (acute) reduced the immobility time in the test. To further investigate the possibility that the WHR were less responsive to selective serotonin reuptake inhibitors, the effect of repeated treatment with fluoxetine (20 mg/kg, 7 days) was investigated in the LH model. The results demonstrated that fluoxetine failed to reduce the number of escape failures in two different protocols. These data suggest that the WHR do not respond to the conventional antidepressant treatment in the FST or the LH. Only s-ketamine and repeated imipramine were effective in WHR in a modified FST protocol. Altogether, these results indicate that WHR may be an interesting tool to investigate the mechanisms associated with the resistance to antidepressant drugs and identify more effective treatments.
Collapse
|
7
|
Bio-behavioural changes in treatment-resistant socially isolated FSL rats show variable or improved response to combined fluoxetine-olanzapine versus olanzapine treatment. IBRO Neurosci Rep 2022; 13:284-298. [PMID: 36204253 PMCID: PMC9529672 DOI: 10.1016/j.ibneur.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
|
8
|
Olatunji TL, Siebert F, Adetunji AE, Harvey BH, Gericke J, Hamman JH, Van der Kooy F. Sceletium tortuosum: A review on its phytochemistry, pharmacokinetics, biological, pre-clinical and clinical activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114711. [PMID: 34758918 DOI: 10.1016/j.jep.2021.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum (L.) N.E.Br., the most sought after and widely researched species in the genus Sceletium is a succulent forb endemic to South Africa. Traditionally, this medicinal plant is mainly masticated or smoked and used for the relief of toothache, abdominal pain, as a mood-elevator, analgesic, hypnotic, anxiolytic, thirst and hunger suppressant, and for its intoxicating/euphoric effects. Sceletium tortuosum is currently of widespread scientific interest due to its clinical potential in treating anxiety and depression, relieving stress in healthy individuals, and enhancing cognitive functions. These pharmacological actions are attributed to its phytochemical constituents referred to as mesembrine-type alkaloids. AIM OF THE REVIEW The aim of this review was to comprehensively summarize and critically evaluate recent research advances on the phytochemistry, pharmacokinetics, biological, pre-clinical and clinical activities of the medicinal plant S. tortuosum. Additionally, current ongoing research and future perspectives are also discussed. METHODS All relevant scientific articles, books, MSc and Ph.D. dissertations on botany, behavioral pharmacology, traditional uses, and phytochemistry of S. tortuosum were retrieved from different databases (including Science Direct, PubMed, Google Scholar, Scopus and Web of Science). For pharmacokinetics and pharmacological effects of S. tortuosum, the focus fell on relevant publications published between 2009 and 2021. RESULTS Twenty-five alkaloids belonging to four structural classes viz: mesembrine, Sceletium A4, joubertiamine, and tortuosamine, have been identified from S. tortuosum, of which the mesembrine class is predominant. The crude extracts and commercially available standardized extracts of S. tortuosum have displayed a wide spectrum of biological activities (e.g. antimalarial, anti-oxidant, neuromodulatory, immunomodulatory, anti-HIV, neuroprotection) in in vitro or in vivo studies. While the plant has been studied in clinical populations, this has only been in healthy subjects, so that further study in pathological states remains to be done. Nevertheless, the aforementioned studies have demonstrated that S. tortuosum has potential for enhancing cognitive function and managing anxiety and depression. CONCLUSION As an important South African medicinal plant, S. tortuosum has garnered many research advances on its phytochemistry and biological activities over the last decade. These scientific studies have shown that S. tortuosum has various bioactivities. The findings have further established the link between the phytochemistry and pharmacological application, and support the traditional use of S. tortuosum in the indigenous medicine of South Africa.
Collapse
Affiliation(s)
- T L Olatunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - F Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - A E Adetunji
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - B H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa
| | - J Gericke
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - J H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - F Van der Kooy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
9
|
Gericke J, Lekhooa M, Steyn SF, Viljoen AM, Harvey BH. An acute dose-ranging evaluation of the antidepressant properties of Sceletium tortuosum (Zembrin®) versus escitalopram in the Flinders Sensitive Line rat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114550. [PMID: 34454055 DOI: 10.1016/j.jep.2021.114550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum (L.) N.E.Br. (ST) has been used by the Khoisan people of South Africa as a mood elevator. Its various pharmacological mechanisms of action suggest distinct potential as an antidepressant. Clinical studies in healthy individuals suggest beneficial effects on mood, cognition, and anxiety. AIM OF THE STUDY To obtain a chromatographic fingerprint of a standardized extract of S. tortuosum (Zembrin®), and to evaluate the acute antidepressant-like properties of Zembrin® versus the reference antidepressant, escitalopram, in the Flinders Sensitive Line (FSL) rat, a genetic rodent model of depression. MATERIALS AND METHODS The chemical profile of Zembrin® was determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) chromatogram method using alkaloid standards. Twelve saline treated FSL and six Flinders Resistant Line (FRL) control rats were used to confirm face validity of the FSL model using the forced swim test (FST). Thereafter, FSL rats (n = 10) received either 5, 10, 25, 50 or 100 mg/kg of Zembrin®, or 5, 10 or 20 mg/kg escitalopram oxalate (ESC), both via oral gavage, and subjected to the open field test (OFT) and FST. RESULTS Four main ST alkaloids were identified and quantified in Zembrin® viz. mesembrenone, mesembrenol, mesembrine, and mesembranol (47.9%, 32%, 13.2%, and 6.8% of the total alkaloids, respectively). FSL rats showed significantly decreased swimming and climbing (coping) behaviours, and significantly increased immobility (despair), versus FRL controls. ESC 5 mg/kg and Zembrin® 25 mg/kg and 50 mg/kg showed significant dose-dependent reversal of immobility in FSL rats and variable effects on coping behaviours. Zembrin® 50 mg/kg was the most effective antidepressant dose, showing equivalence to ESC 5. CONCLUSIONS Zembrin® (25 and 50 mg/kg) and ESC (5 mg/kg) are effective antidepressants after acute treatment in the FST, as assessed in FSL rats. Moreover, Zembrin® 50 mg/kg proved equivalent to ESC 5. Further long-term bio-behavioural studies on the antidepressant properties of Zembrin® are warranted.
Collapse
Affiliation(s)
- Johané Gericke
- Center of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Makhotso Lekhooa
- Center of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Stephan F Steyn
- Center of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Private Bag X6001, Potchefstroom, 2520, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Olatunji TL, Siebert F, Adetunji AE, Harvey BH, Gericke J, Hamman JH, Van der Kooy F. Sceletium tortuosum: A review on its phytochemistry, pharmacokinetics, biological and clinical activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114476. [PMID: 34333104 DOI: 10.1016/j.jep.2021.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sceletium tortuosum (L.) N.E.Br, the most sought after and widely researched species in the genus Sceletium is a succulent forb endemic to South Africa. Traditionally, this medicinal plant is mainly masticated or smoked and used for the relief of toothache, abdominal pain, and as a mood-elevator, analgesic, hypnotic, anxiolytic, thirst and hunger suppressant, and for its intoxicating/euphoric effects. Sceletium tortuosum is currently of widespread scientific interest due to its clinical potential in treating anxiety and depression, relieving stress in healthy individuals, and enhancing cognitive functions. These pharmacological actions are attributed to its phytochemical constituents referred to as mesembrine-type alkaloids. AIM OF THE REVIEW The aim of this review was to comprehensively summarize and critically evaluate recent research advances on the phytochemistry, pharmacokinetics, biological and clinical activities of the medicinal plant S. tortuosum. Additionally, current ongoing research and future perspectives are also discussed. METHODS All relevant scientific articles, books, MSc and Ph.D. dissertations on botany, behavioral pharmacology, traditional uses, and phytochemistry of S. tortuosum were retrieved from different databases (including Science Direct, PubMed, Google Scholar, Scopus and Web of Science). For pharmacokinetics and pharmacological effects of S. tortuosum, the focus fell on relevant publications published between 2009 and 2021. RESULTS Twenty-five alkaloids belonging to four structural classes viz: mesembrine, Sceletium A4, joubertiamine, and tortuosamine, have been identified from S. tortuosum, of which the mesembrine class is predominant. The crude extracts and commercially available standardized extracts of S. tortuosum have displayed a wide spectrum of biological activities (e.g. antimalarial, anti-oxidant, immunomodulatory, anti-HIV, neuroprotection, enhancement of cognitive function) in in vitro or in vivo studies. This plant has not yet been studied in a clinical population, but has potential for enhancing cognitive function, and managing anxiety and depression. CONCLUSION As an important South African medicinal plant, S. tortuosum has garnered many research advances on its phytochemistry and biological activities over the last decade. These scientific studies have shown that S. tortuosum has various bioactivities. The findings have further established the link between the phytochemistry and pharmacological application, and support the traditional use of S. tortuosum in the indigenous medicine of South Africa.
Collapse
Affiliation(s)
- T L Olatunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - F Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - A E Adetunji
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - B H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Department of Pharmacology, School of Pharmacy, North-West University, Potchefstroom Campus, 2520, South Africa.
| | - J Gericke
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; Department of Pharmacology, School of Pharmacy, North-West University, Potchefstroom Campus, 2520, South Africa.
| | - J H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - F Van der Kooy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
11
|
Harvey BH, Uys MM, Viljoen FP, Shahid M, Sonntag Q, Meyer LCR. Hippocampal monoamine changes in the Flinders sensitive line rat: A case for the possible use of selective α 2C-AR-antagonists in stress and anxiety disorders in companion animals. Res Vet Sci 2021; 135:175-183. [PMID: 33529845 DOI: 10.1016/j.rvsc.2021.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Non-selective α2-adrenoreceptor (AR) stimulation delivers favourable sedative, analgesic, muscle relaxant and anxiolytic actions in companion animals, but is associated with cardiovascular and respiratory side effects. Anxiety conditions underscore monoamine disturbances amenable to α2-AR modulation. We investigated sub-chronic (14 day s.c.) treatment with the selective α2C-AR antagonist, ORM-10921 (0.03, 0.1, 0.3 mg/kg/d) on hippocampal noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their turnover levels in stress sensitive Flinders Sensitive Line (FSL) rats versus Flinders Resistant Line (FRL) controls, using high performance liquid chromatography. The effects of ORM-10921 were compared to the non-selective α2-AR antagonist, idazoxan (IDAZ; 3 mg/kg/d), and to imipramine (IMI; 15 mg/kg/d), a reference antidepressant in this model. FSL rats displayed significantly reduced 5-HT (p = 0.03) and DA (p = 0.02) levels vs. FRL controls, while NA levels showed a similar trend. ORM-10921 significantly increased NA (all doses p ≤ 0.02), 5-HT (0.1 and 0.3 mg/kg p ≤ 0.03) and DA levels (all doses p ≤ 0.03), which correlated with decreased monoamine turnover. In contrast, IDAZ significantly elevated NA (p < 0.005) and DA (p < 0.004) but not 5-HT levels. IMI also significantly increased 5-HT (p < 0.009), with a tendency to increase NA (p = 0.09) but not DA. ORM-10921 exerts similar albeit broader effects on hippocampal monoamines than IDAZ, explaining earlier established efficacy associated with α2C-AR antagonism in animal models of depression and cognitive dysfunction. These and the current studies encourage application of ORM-10921 in depression in humans, as well as raise the intriguing possibility that selective α2C-AR antagonists may be beneficial in anxiety and stress-related disorders in companion animals. Both warrant further study.
Collapse
Affiliation(s)
- Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Potchefstroom, South Africa; South African MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - Madeleine M Uys
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Francois P Viljoen
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | | | - Quixi Sonntag
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Leith C R Meyer
- Centre for Veterinary Wildlife Studies and Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
12
|
Mncube K, Möller M, Harvey BH. Post-weaning Social Isolated Flinders Sensitive Line Rats Display Bio-Behavioural Manifestations Resistant to Fluoxetine: A Model of Treatment-Resistant Depression. Front Psychiatry 2021; 12:688150. [PMID: 34867504 PMCID: PMC8635751 DOI: 10.3389/fpsyt.2021.688150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment-resistant depression (TRD) complicates the management of major depression (MD). The underlying biology of TRD involves interplay between genetic propensity and chronic and/or early life adversity. By combining a genetic animal model of MD and post-weaning social isolation rearing (SIR), we sought to produce an animal that displays more severe depressive- and social anxiety-like manifestations resistant to standard antidepressant treatment. Flinders Sensitive Line (FSL) pups were social or isolation reared from weaning [postnatal day (PND) 21], receiving fluoxetine (FLX) from PND 63 (10 mg/kg × 14 days), and compared to Sprague Dawley (SD) controls. Depressive-, anxiety-like, and social behaviour were assessed from PND 72 in the forced swim test (FST) and social interaction test (SIT). Post-mortem cortico-hippocampal norepinephrine (NE), serotonin (5-HT), and dopamine (DA), as well as plasma interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-α), corticosterone (CORT), and dopamine-beta-hydroxylase (DBH) levels were assayed. FSL rats displayed significant cortico-hippocampal monoamine disturbances, and depressive- and social anxiety-like behaviour, the latter two reversed by FLX. SIR-exposed FSL rats exhibited significant immobility in the FST and social impairment which were, respectively, worsened by or resistant to FLX. In SIR-exposed FSL rats, FLX significantly raised depleted NE and 5-HT, significantly decreased DBH and caused a large effect size increase in DA and decrease in CORT and TNF-α. Concluding, SIR-exposed FSL rats display depressive- and social anxiety-like symptoms that are resistant to, or worsened by, FLX, with reduced plasma DBH and suppressed cortico-hippocampal 5-HT, NE and DA, all variably altered by FLX. Exposure of a genetic animal model of MD to post-weaning SIR results in a more intractable depressive-like phenotype as well as changes in TRD-related biomarkers, that are resistant to traditional antidepressant treatment. Given the relative absence of validated animal models of TRD, these findings are especially promising and warrant study, especially further predictive validation.
Collapse
Affiliation(s)
- Khulekani Mncube
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa.,South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
de Abreu MS, Giacomini ACVV, Genario R, Rech N, Carboni J, Lakstygal AM, Amstislavskaya TG, Demin KA, Leonard BE, Vlok M, Harvey BH, Piato A, Barcellos LJG, Kalueff AV. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol Biochem Behav 2020; 193:172928. [PMID: 32289330 DOI: 10.1016/j.pbb.2020.172928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália Rech
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Júlia Carboni
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
| | - Brian E Leonard
- University College Galway, Pharmacology Department, Galway, Ireland
| | - Marli Vlok
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Angelo Piato
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Postgraduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
14
|
Esketamine and rapastinel, but not imipramine, have antidepressant-like effect in a treatment-resistant animal model of depression. Acta Neuropsychiatr 2019; 31:258-265. [PMID: 31230597 DOI: 10.1017/neu.2019.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Treatment-resistance to antidepressants is a major problem in the pharmacotherapy of major depressive disorder (MDD). Unfortunately, only a few animal models are suitable for studying treatment-resistant depression, among them repeated treatment with Adrenocorticotropic hormone (ACTH) appears to be useful to mimic treatment-resistance to monoaminergic antidepressants. Therefore, the present work aimed to investigate the effectiveness of s-ketamine and rapastinel (formerly GLYX13), modulators of the glutamatergic N-methyl-D-aspartate receptor in ACTH-treated animals. METHODS Naïve male Sprague Dawley rats were subjected to repeated subcutaneous injections with ACTH (100 µg/0.1 ml/rat/day) for 14 days and drug treatment on the test day (open field and forced swim test) with imipramine, s-ketamine or rapastinel. In addition, assessment of plasma levels of corticosterone and ACTH was carried out. RESULTS We found that rats repeatedly treated with ACTH for 14 days responded to single injections with s-ketamine (15 mg/kg) and rapastinel (10 mg/kg), but failed to respond to imipramine (15 mg/kg). In the plasma, the levels of corticosterone and ACTH were increased after 14 days of daily treatment with ACTH, independently of the treatment. CONCLUSION The present data confirm development of a resistance to treatment following chronic ACTH administration. In addition, the study confirms the possible effectiveness of s-ketamine and rapastinel as treatment options in treatment-resistant depression. Moreover, it highlights the importance of the glutamatergic system in the neurobiology of depression. Further studies are necessary to evaluate how repeated treatment with ACTH leads to a depressed condition resistant to monoaminergic antidepressants.
Collapse
|
15
|
Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019; 14:365-378. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.
Collapse
Affiliation(s)
- Konstantin A Demin
- a Institute of Experimental Medicine , Almazov National Medical Research Centre , St. Petersburg , Russia.,b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Maxim Sysoev
- c Laboratory of Preclinical Bioscreening , Russian Research Center for Radiology and Surgical Technologies , St. Petersburg , Russia.,d Institute of Experimental Medicine , St. Petersburg , Russia
| | - Maria V Chernysh
- b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Anna K Savva
- e Faculty of Biology , St. Petersburg State University , St. Petersburg , Russia
| | | | | | - Cai Song
- h Research Institute of Marine Drugs and Nutrition , Guangdong Ocean University , Zhanjiang , China.,i Marine Medicine Development Center, Shenzhen Institute , Guangdong Ocean University , Shenzhen , China
| | - Murilo S De Abreu
- j Bioscience Institute , University of Passo Fundo (UPF) , Passo Fundo , Brazil
| | | | - Matthew O Parker
- l Brain and Behaviour Lab , School of Pharmacy and Biomedical Science, University of Portsmouth , Portsmouth , UK
| | - Brian H Harvey
- m Center of Excellence for Pharmaceutical Sciences , Division of Pharmacology, School of Pharmacy, North-West University , Potchefstroom , South Africa
| | - Li Tian
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Eero Vasar
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Tatyana Strekalova
- o Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, and Department of Normal Physiology , Sechenov First Moscow State Medical University , Moscow , Russia.,p Laboratory of Cognitive Dysfunctions , Institute of General Pathology and Pathophysiology , Moscow , Russia.,q Department of Neuroscience , Maastricht University , Maastricht , The Netherlands
| | | | - Andrey D Volgin
- g The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell , LA , USA.,r Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia
| | - Erik T Alpyshov
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Dongmei Wang
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Allan V Kalueff
- s School of Pharmacy , Southwest University , Chongqing , China.,t Almazov National Medical Research Centre , St. Petersburg , Russia.,u Ural Federal University , Ekaterinburg , Russia.,v Granov Russian Research Center of Radiology and Surgical Technologies , St. Petersburg , Russia.,w Laboratory of Biological Psychiatry, Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia.,x Laboratory of Translational Biopsychiatry , Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia.,y ZENEREI Institute , Slidell , LA , USA.,z The International Stress and Behavior Society (ISBS), US HQ , New Orleans , LA , USA
| |
Collapse
|
16
|
Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression. Neurochem Int 2019; 125:7-15. [PMID: 30716357 DOI: 10.1016/j.neuint.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Altered endocannabinoid (eCB) signalling is suggested as an important contributor to the pathophysiology of depression. To further elucidate this, we conducted a study using a genetic rat model of depression, the Flinders Sensitive Line (FSL), and their controls, the Flinders Resistant Line (FRL) rats. Plasma, right and left prefrontal cortex, and hippocampus were isolated from FSL and FRL rats. We analyzed each region for the eCB anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels by liquid chromatography/multiple reaction monitoring (LC/MRM), mRNA and protein levels of the cannabinoid type 1 receptor (CB1R), fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) by real time qPCR and Western blotting. Content of 2-AG was lower in the left side of the hippocampus and prefrontal cortex in FSL rats compared to FRL rats. Inversely, levels of AEA were higher in right hippocampus than in left hippocampus. In plasma, AEA levels were increased and 2-AG decreased. Cannabinoid receptor 1 (Cnr1), Faah and Magl mRNA levels were prominently decreased in right prefrontal cortex of FSL rats as compared to FRL rats. Protein expression of CB1R and FAAH were decreased in left hippocampus. In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour. Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions. Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.
Collapse
|
17
|
Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377:45-58. [PMID: 30649612 DOI: 10.1007/s00441-018-02987-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.
Collapse
|
18
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene Blue Analogues with Marginal Monoamine Oxidase Inhibition Retain Antidepressant-like Activity. ACS Chem Neurosci 2018; 9:2917-2928. [PMID: 29976053 DOI: 10.1021/acschemneuro.8b00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylene blue (MB) possesses diverse medical applications. Among these, MB presents with antidepressant-like effects in animals and has shown promise in clinical trials for the treatment of mood disorders. As an antidepressant, MB may act via various mechanisms which include modulation of the nitric oxide cyclic guanosine monophosphate (NO-cGMP) cascade, enhancement of mitochondrial respiration and antioxidant effects. MB is also, however, a high potency inhibitor of monoamine oxidase (MAO) A, which most likely contributes to its antidepressant effect, but also to its adverse effects profile (e.g., serotonin toxicity). The latter has raised the question whether it is possible to design out the MAO inhibition properties of MB yet retaining its clinically useful attributes. This study explores this idea further by characterizing five newly synthesized low MAO-A active MB analogues and examining their antidepressant-like properties in the acute forced swim test (FST) in rats, with comparison to imipramine and MB. The results show that all five analogues exhibit antidepressant-like properties in the FST without confounding effects on locomotor activity. The magnitude of these effects is comparable to those of imipramine and MB. Moreover, these newly synthesized MB analogues are markedly less potent MAO-A inhibitors (IC50 = 0.518-4.73 μM) than MB (IC50 = 0.07 μM). We postulate that such lower potency MAO-A inhibitors may present with a reduced risk of adverse effects associated with MAO-A inhibition. While low level MAO-A inhibition still may produce an antidepressant effect, we posit that other MB-related mechanisms may underlie their antidepressant effects, thereby representing a novel group of antidepressant compounds.
Collapse
Affiliation(s)
- Anzelle Delport
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
19
|
Oberholzer I, Möller M, Holland B, Dean OM, Berk M, Harvey BH. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat. Metab Brain Dis 2018; 33:467-480. [PMID: 29101602 DOI: 10.1007/s11011-017-0144-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in FSL animals. Concluding, FSL rats present with cognitive deficits and depressive-like behaviors that are reversed by acute and chronic GM treatment, similar to that of IMI.
Collapse
Affiliation(s)
- Inge Oberholzer
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Marisa Möller
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Brendan Holland
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, 3220, Australia
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, 3052, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, 3052, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa.
| |
Collapse
|
20
|
Discovery versus implementation research on mental disorders in low- and middle-income countries. Acta Neuropsychiatr 2017; 29:191-192. [PMID: 28793939 DOI: 10.1017/neu.2017.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α 2C-Adrenoceptor in Cognition, Depression, and Schizophrenia-New Developments and Future Perspective. Front Psychiatry 2017; 8:144. [PMID: 28855875 PMCID: PMC5558054 DOI: 10.3389/fpsyt.2017.00144] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Madeleine Monique Uys
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Brian Herbert Harvey
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|