1
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
2
|
Li Q, Button-Simons KA, Sievert MAC, Chahoud E, Foster GF, Meis K, Ferdig MT, Milenković T. Enhancing Gene Co-Expression Network Inference for the Malaria Parasite Plasmodium falciparum. Genes (Basel) 2024; 15:685. [PMID: 38927622 PMCID: PMC11202799 DOI: 10.3390/genes15060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA Attached.
Collapse
Affiliation(s)
- Qi Li
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| | - Katrina A. Button-Simons
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mackenzie A. C. Sievert
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elias Chahoud
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Preprofessional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel F. Foster
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kaitlynn Meis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T. Ferdig
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Lucy Family Institute for Data & Society, University of Notre Dame, Notre Dame, IN 46556, USA (M.T.F.)
| |
Collapse
|
5
|
Rund SSC, Yoo B, Alam C, Green T, Stephens MT, Zeng E, George GF, Sheppard AD, Duffield GE, Milenković T, Pfrender ME. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation. BMC Genomics 2016; 17:653. [PMID: 27538446 PMCID: PMC4991082 DOI: 10.1186/s12864-016-2998-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
Background Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Results Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. Conclusions This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2998-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel S C Rund
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centre for Immunity, Infection and Evolution, Institute of Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Boyoung Yoo
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Camille Alam
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Taryn Green
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Melissa T Stephens
- Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA.,Present Address: Department of Computer Science, University of South Dakota, Vermillion, SD, 57069, USA
| | - Gary F George
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Aaron D Sheppard
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Giles E Duffield
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tijana Milenković
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael E Pfrender
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|