1
|
Weiss-Hersh K, Garcia AL, Marosvölgyi T, Szklenár M, Decsi T, Rühl R. Saturated and monounsaturated fatty acids in membranes are determined by the gene expression of their metabolizing enzymes SCD1 and ELOVL6 regulated by the intake of dietary fat. Eur J Nutr 2019; 59:2759-2769. [PMID: 31676951 PMCID: PMC7413877 DOI: 10.1007/s00394-019-02121-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effect of dietary fats on the incorporation of saturated (SAFAs) and monounsaturated dietary fatty acids (MUFAs) into plasma phospholipids and the regulation of the expression of lipid-metabolizing enzymes in the liver. METHODS Mice were fed different diets containing commonly used dietary fats/oils (coconut fat, margarine, fish oil, sunflower oil, or olive oil) for 4 weeks (n = 6 per diet group). In a second experiment, mice (n = 6 per group) were treated for 7 days with synthetic ligands to activate specific nuclear hormone receptors (NHRs) and the hepatic gene expression of CYP26A1 was investigated. Hepatic gene expression of stearoyl-coenzyme A desaturase 1 (SCD1), elongase 6 (ELOVL6), and CYP26A1 was examined using quantitative real-time PCR (QRT-PCR). Fatty acid composition in mouse plasma phospholipids was analyzed by gas chromatography (GC). RESULTS We found significantly reduced hepatic gene expression of SCD1 and ELOVL6 after the fish oil diet compared with the other diets. This resulted in reduced enzyme-specific fatty acid ratios, e.g., 18:1n9/18:0 for SCD1 and 18:0/16:0 and 18:1n7/16:1n7 for ELOVL6 in plasma phospholipids. Furthermore, CYP26A1 a retinoic acid receptor-specific target was revealed as a new player mediating the suppressive effect of fish oil-supplemented diet on SCD1 and ELOVL6 hepatic gene expression. CONCLUSION Plasma levels of MUFAs and SAFAs strongly reflect an altered hepatic fatty acid-metabolizing enzyme expression after supplementation with different dietary fats/oils.
Collapse
Affiliation(s)
- Kathrin Weiss-Hersh
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Ada L Garcia
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | - Tamás Decsi
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
2
|
Arunima S, Rajamohan T. Lauric Acid Beneficially Modulates Apolipoprotein Secretion and Enhances Fatty Acid Oxidation via PPARα-dependent Pathways in Cultured Rat Hepatocytes. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:1-11. [DOI: 10.14218/jerp.2017.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
4
|
Yamada-Kato T, Momoi S, Okunishi I, Minami M, Oishi Y, Osawa T, Naito M. Anti-obesity Effects of Wasabi Leaf Extract on Rats Fed a High-fat Diet are Related to Upregulation of mRNA Expression of β3-adrenergic Receptors in Interscapular Brown Adipose Tissue. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Saori Momoi
- Division of Nutrition & Health, School and Graduate School of Life Studies, Sugiyama Jogakuen University
| | - Isao Okunishi
- Research & Development Division, Kinjirushi Co., Ltd
| | | | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Toshihiko Osawa
- Department of Health and Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University
| | - Michitaka Naito
- Division of Nutrition & Health, School and Graduate School of Life Studies, Sugiyama Jogakuen University
| |
Collapse
|
5
|
Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats - a comparative study. Br J Nutr 2014; 111:1782-90. [PMID: 24513138 DOI: 10.1017/s000711451400004x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.
Collapse
|
6
|
Weiss K, Mihály J, Liebisch G, Marosvölgyi T, Garcia AL, Schmitz G, Decsi T, Rühl R. Effect of high versus low doses of fat and vitamin A dietary supplementation on fatty acid composition of phospholipids in mice. GENES AND NUTRITION 2013; 9:368. [PMID: 24306959 DOI: 10.1007/s12263-013-0368-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
Dietary fat and vitamin A provide important precursors for potent bioactive ligands of nuclear hormone receptors, which regulate various enzymes involved in lipid homeostasis, metabolism and inflammation. We determined the effects of dietary fat and dietary vitamin A on hepatic expression of two fatty acid metabolizing enzymes, elongase 6 (ELOVL6) and stearoyl-coenzyme A desaturase 1 (SCD1) and the concentration of saturated fatty acids (SAFA) and monounsaturated fatty acid (MUFA) of phospholipids in serum and liver. Mice (n = 6) were fed 4 weeks with diets containing 2, 5 and 25 % of fat or vitamin A (0, 2,500 and 326,500 RE/kg as retinyl palmitate). MUFAs and SAFAs were measured using GC and ESI-MS/MS. Hepatic expression of metabolizing enzymes was determined using QRT-PCR. ELOVL6 was significantly down-regulated in response to a high-fat diet (p < 0.001) and significantly up-regulated in response to low-fat diet (p < 0.05). SCD1 expression was significantly lower in high- versus low-fat diet (p < 0.05). The vitamin A content in the diet did not influence the hepatic expression of both enzymes. In plasma, the amounts of MUFAs bound to phospholipids significantly decreased in response to a high-fat diet and increased after a low-fat diet. This tendency was also observed in the liver for various phospholipids sub-classes. In summary, this study shows that fat content in the diet has a stronger impact than the content of vitamin A on hepatic gene expression of SCD1 and ELOVL6 and thereby on MUFA and SAFA concentrations in liver and plasma.
Collapse
Affiliation(s)
- Kathrin Weiss
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wongsiriroj N, Jiang H, Piantedosi R, Yang KJZ, Kluwe J, Schwabe RF, Ginsberg H, Goldberg IJ, Blaner WS. Genetic dissection of retinoid esterification and accumulation in the liver and adipose tissue. J Lipid Res 2013; 55:104-14. [PMID: 24186946 DOI: 10.1194/jlr.m043844] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Approximately 80-90% of all retinoids in the body are stored as retinyl esters (REs) in the liver. Adipose tissue also contributes significantly to RE storage. The present studies, employing genetic and nutritional interventions, explored factors that are responsible for regulating RE accumulation in the liver and adipose tissue and how these influence levels of retinoic acid (RA) and RA-responsive gene expression. Our data establish that acyl-CoA:retinol acyltransferase (ARAT) activity is not involved in RE synthesis in the liver, even when mice are nutritionally stressed by feeding a 25-fold excess retinol diet or upon ablation of cellular retinol-binding protein type I (CRBPI), which is proposed to limit retinol availability to ARATs. Unlike the liver, where lecithin:retinol acyltransferase (LRAT) is responsible for all RE synthesis, this is not true for adipose tissue where Lrat-deficient mice display significantly elevated RE concentrations. However, when CrbpI is also absent, RE levels resemble wild-type levels, suggesting a role for CrbpI in RE accumulation in adipose tissue. Although expression of several RA-responsive genes is elevated in Lrat-deficient liver, employing a sensitive liquid chromatography tandem mass spectrometry protocol and contrary to what has been assumed for many years, we did not detect elevated concentrations of all-trans-RA. The elevated RA-responsive gene expression was associated with elevated hepatic triglyceride levels and decreased expression of Pparδ and its downstream Pdk4 target, suggesting a role for RA in these processes in vivo.
Collapse
|
8
|
Bionaz M, Chen S, Khan MJ, Loor JJ. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Res 2013; 2013:684159. [PMID: 23737762 PMCID: PMC3657398 DOI: 10.1155/2013/684159] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022] Open
Abstract
Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle.
Collapse
Affiliation(s)
- Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Shuowen Chen
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Muhammad J. Khan
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Juan J. Loor
- Animal and Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem 2013; 288:10490-504. [PMID: 23430257 DOI: 10.1074/jbc.m112.429852] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of retinoic acid receptor (RAR) with all-trans-retinoic acid (RA) ameliorates glucose intolerance and insulin resistance in obese mice. The recently discovered fibroblast growth factor 21 (FGF21) is a hepatocyte-derived hormone that restores glucose and lipid homeostasis in obesity-induced diabetes. However, whether hepatic RAR is linked to FGF21 in the control of lipid metabolism and energy homeostasis remains elusive. Here we identify FGF21 as a direct target gene of RARβ. The gene transcription of Fgf21 is increased by the RAR agonist RA and by overexpression of RARα and RARβ, but it is unaffected by RARγ in HepG2 cells. Promoter deletion analysis characterizes a putative RA-responsive element (RARE) primarily located in the 5'-flanking region of the Fgf21 gene. Disruption of the RARE sequence abolishes RA responsiveness. In vivo adenoviral overexpression of RARβ in the liver enhances production and secretion of FGF21, which in turn promotes hepatic fatty acid oxidation and ketogenesis and ultimately leads to increased energy expenditure in mice. The metabolic effects of RA or RARβ are mimicked by FGF21 overexpression and largely abolished by FGF21 knockdown. Moreover, hepatic RARβ is bound to the putative RAREs of the Fgf21 promoter in a fasting-inducible manner in vivo, which contributes to FGF21 induction and the metabolic adaptation to prolonged fasting. In addition to other nuclear receptors, such as peroxisome proliferator-activated receptor α and retinoic acid receptor-related receptor α, RAR may act as a novel component to induce hepatic FGF21 in the regulation of lipid metabolism. The hepatic RAR-FGF21 pathway may represent a potential drug target for treating metabolic disorders.
Collapse
Affiliation(s)
- Yu Li
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
10
|
McAinch AJ, Lee JS, Bruce CR, Tunstall RJ, Hawley JA, Cameron-Smith D. Dietary Regulation of Fat Oxidative Gene Expression in Different Skeletal Muscle Fiber Types. ACTA ACUST UNITED AC 2012; 11:1471-9. [PMID: 14694211 DOI: 10.1038/oby.2003.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms alpha and gamma, and selected enzyme activities in type I and II skeletal muscle. RESEARCH METHODS AND PROCEDURES Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. RESULTS The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-gamma coactivator and fork-head transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARalpha and PPARgamma protein levels were also not altered by the HF diet. DISCUSSION An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and fork-head transcription factor O1 mRNA and the protein abundance of PPARalpha and PPARgamma.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/genetics
- 3-Hydroxyacyl CoA Dehydrogenases/metabolism
- Animals
- Blotting, Western
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- DNA-Binding Proteins
- Dietary Fats/metabolism
- Dietary Fats/pharmacology
- Female
- Forkhead Transcription Factors
- Gene Expression Regulation, Enzymologic/physiology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nerve Tissue Proteins
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Isoforms
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Andrew J McAinch
- School of Health Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
A high-fat diet induces lower expression of retinoid receptors and their target genes GAP-43/neuromodulin and RC3/neurogranin in the rat brain. Br J Nutr 2010; 103:1720-9. [PMID: 20102671 DOI: 10.1017/s0007114509993886] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Numerous studies have reported an association between cognitive impairment in old age and nutritional factors, including dietary fat. Retinoic acid (RA) plays a central role in the maintenance of cognitive processes via its nuclear receptors (NR), retinoic acid receptor (RAR) and retinoid X receptor (RXR), and the control of target genes, e.g. the synaptic plasticity markers GAP-43/neuromodulin and RC3/neurogranin. Given the relationship between RA and the fatty acid signalling pathways mediated by their respective NR (RAR/RXR and PPAR), we investigated the effect of a high-fat diet (HFD) on (1) PUFA status in the plasma and brain, and (2) the expression of RA and fatty acid NR (RARbeta, RXRbetagamma and PPARdelta), and synaptic plasticity genes (GAP-43 and RC3), in young male Wistar rats. In the striatum of rats given a HFD for 8 weeks, real-time PCR (RT-PCR) revealed a decrease in mRNA levels of RARbeta ( - 14 %) and PPARdelta ( - 13 %) along with an increase in RXRbetagamma (+52 %). Concomitantly, RT-PCR and Western blot analysis revealed (1) a clear reduction in striatal mRNA and protein levels of RC3 ( - 24 and - 26 %, respectively) and GAP-43 ( - 10 and - 42 %, respectively), which was confirmed by in situ hybridisation, and (2) decreased hippocampal RC3 and GAP-43 protein levels (approximately 25 %). Additionally, HFD rats exhibited a significant decrease in plasma ( - 59 %) and brain ( - 6 %) n-3 PUFA content, mainly due to the loss of DHA. These results suggest that dietary fat induces neurobiological alterations by modulating the brain RA signalling pathway and n-3 PUFA content, which have been previously correlated with cognitive impairment.
Collapse
|
12
|
|
13
|
Hostetler HA, Huang H, Kier AB, Schroeder F. Glucose directly links to lipid metabolism through high affinity interaction with peroxisome proliferator-activated receptor alpha. J Biol Chem 2007; 283:2246-54. [PMID: 18055466 DOI: 10.1074/jbc.m705138200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The pathophysiology of diabetes is characterized not only by elevated glucose but also elevated long chain fatty acid levels. We show for the first time that the peroxisome proliferator-activated receptor-alpha (PPARalpha) binds glucose and glucose metabolites with high affinity, resulting in significantly altered PPARalpha secondary structure. Glucose decreased PPARalpha interaction with fatty acid metabolites and steroid receptor coactivator-1 while increasing PPARalpha interaction with DNA. Concomitantly, glucose increased PPARalpha interaction with steroid receptor coactivator-1, DNA binding, and transactivation of beta-oxidation pathways in the presence of activating ligands. Heterodimerization of PPARalpha to the retinoid X receptor-alpha resulted in even larger increases in transactivation with the addition of glucose. These data suggest that PPARalpha is responsible for maintaining energy homeostasis through a concentration-dependent regulation of both lipids and sugars and that hyperglycemic injury mediated by PPARalpha occurs not only indirectly through elevated long chain fatty acid levels but also through direct action of glucose on PPARalpha.
Collapse
Affiliation(s)
- Heather A Hostetler
- Department of Physiology, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
14
|
Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2007; 43:1-17. [PMID: 17882463 DOI: 10.1007/s11745-007-3111-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 12/16/2022]
Abstract
Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that affect lipid and glucose catabolism and storage.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Carotenoids and retinoids are groups of nutritionally-relevant compounds present in many foods of plant origin (carotenoids) and animal origin (mainly retinoids). Their levels in human subjects vary depending on the diversity and amount of the individual's nutrient intake. Some carotenoids and retinoids have been investigated for their effects on the immune system bothin vitroandin vivo. It has been shown that retinoids have the potential to mediate or induce proliferative and differentiating effects on several immune-competent cells, and various carotenoids are known to be inducers of immune function. The immune-modulating effects of retinoids have been well documented, while the effects of carotenoids on the immune system have not been investigated as extensively, because little is known about their molecular mechanism of action. The present review will mainly focus on the molecular mechanism of action of retinoids and particularly carotenoids, their nutritional origin and intake, their transfer from the maternal diet to the child and their effects or potential effects on the developing immune system.
Collapse
Affiliation(s)
- Ralph Rühl
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei Krt. 98, H-4012 Debrecen, Hungary.
| |
Collapse
|
16
|
Hsu SC, Huang CJ. Changes in liver PPARα mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice. J Nutr Biochem 2007; 18:86-96. [PMID: 16713235 DOI: 10.1016/j.jnutbio.2006.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/18/2006] [Accepted: 03/02/2006] [Indexed: 11/23/2022]
Abstract
The ligand-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) is known to be activated by common fatty acids and to regulate the expression of genes of various lipid oxidation pathways and transport. High-fat diets provide more fatty acids, which presumably could enhance lipid catabolism through up-regulation of PPARalpha signaling. However, high intake of fat could also lead to obesity. To examine PPARalpha signaling in high-fat feeding and obesity, this study examined the hepatic mRNA expression of PPARalpha and some of its target genes in Wistar rats and C57BL/6J mice fed two levels (20% or 30% wt/wt) of high-safflower-oil (SFO; oleic-acid-rich) diets until animals showed significantly higher body weight (13 weeks for rats and 22 weeks for mice) than those of control groups fed a 5% SFO diet. At the end of these respective feeding periods, only the rats fed 30% SFO and the mice fed 20% SFO among the two groups fed high-fat diets showed significantly higher body weight, white adipose tissue weight, serum leptin and mRNA expression of PPARalpha (P<.05) compared to the respective control groups. Despite elevated acyl-CoA (a PPARalpha target gene) protein and activity in both groups fed high-fat diets, the mRNA expression level of most PPARalpha target genes examined correlated mainly to PPARalpha mRNA levels and not to fat intake or liver lipid levels. The observation that the liver PPARalpha mRNA expression in groups fed high-fat diets was significantly higher only in obese animals with elevated serum leptin implied that obesity and associated hyperleptinemia might have a stronger impact than dietary SFO intake per se on PPARalpha-regulated mRNA expression in the liver.
Collapse
Affiliation(s)
- Shan-Ching Hsu
- Division of Nutritional Science, Institute of Microbiology and Biochemistry, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
17
|
Hoekstra M, Stitzinger M, van Wanrooij EJA, Michon IN, Kruijt JK, Kamphorst J, Van Eck M, Vreugdenhil E, Van Berkel TJC, Kuiper J. Microarray analysis indicates an important role for FABP5 and putative novel FABPs on a Western-type diet. J Lipid Res 2006; 47:2198-207. [PMID: 16885566 DOI: 10.1194/jlr.m600095-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver parenchymal cells play a dominant role in hepatic metabolism and thereby total body cholesterol homeostasis. To gain insight into the specific pathways and genes involved in the response of liver parenchymal cells to increased dietary lipid levels under atherogenic conditions, changes in parenchymal cell gene expression upon feeding a Western-type diet for 0, 2, 4, and 6 weeks were determined using microarray analysis in LDL receptor-deficient mice, an established atherosclerotic animal model. Using ABI Mouse Genome Survey Arrays, we were able to detect 7,507 genes (28% of the total number on an array) that were expressed in parenchymal cells isolated from livers of LDL receptor-deficient mice at every time point investigated. Time-dependent gene expression profiling identified fatty acid binding protein 5 (FABP5) and four novel FABP5-like transcripts located on chromosomes 2, 8, and 18 as important proteins in the primary response of liver parenchymal cells to Western-type diet feeding, because their expression was 16- to 22-fold increased within the first 2 weeks on the Western-type diet. The rapid substantial increase in gene expression suggests that these FABPs may play an important role in the primary protection against the cellular toxicity of cholesterol, free fatty acids, and/or lipid oxidants. Furthermore, as a secondary response to the Western-type diet, liver parenchymal cells of LDL receptor-deficient mice stimulated glycolysis and lipogenesis pathways, resulting in a steady, more atherogenic serum lipoprotein profile (increased VLDL/LDL).
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Villeneuve L, Gisbert E, Zambonino-Infante JL, Quazuguel P, Cahu CL. Effect of nature of dietary lipids on European sea bass morphogenesis: implication of retinoid receptors. Br J Nutr 2006; 94:877-84. [PMID: 16351762 DOI: 10.1079/bjn20051560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of the nature and form of supply of dietary lipids on larval development was investigated in European sea bass larvae, by considering the expression of several genes involved in morphogenesis. Fish were fed from 7 to 37 d post-hatch with five isoproteic and isolipidic compound diets incorporating different levels of EPA and DHA provided by phospholipid or neutral lipid. Phospholipid fraction containing 1.1 % (PL1 diet) to 2.3 % (PL3 diet) of EPA and DHA sustained good larval growth and survival, with low vertebral and cephalic deformities. Similar levels of EPA and DHA provided by the neutral lipid fraction were teratogenic and lethal. Nevertheless, dietary phospholipids containing high levels of DHA and EPA (PL5 diet) induced cephalic (8.5 %) and vertebral column deformities (35.3 %) adversely affecting fish growth and survival; moreover, a down-regulation of retinoid X receptor alpha (RXRalpha), retinoic acid receptor alpha, retinoic acid receptor gamma and bone morphogenetic protein-4 genes was also noted in PL5 dietary group at day 16. High levels of dietary PUFA in neutral lipid (NL3 diet) first up-regulated the expression of RXRalpha at day 16 and then down-regulated most of the studied genes at day 23, leading to skeletal abnormalities and death of the larvae. A moderate level of PUFA in neutral lipids up-regulated genes only at day 16, inducing a lesser negative effect on growth, survival and malformation rate than the NL3 group. These results showed that retinoid pathways can be influenced by dietary lipids leading to skeletal malformation during sea bass larvae development.
Collapse
Affiliation(s)
- Laure Villeneuve
- Centre d'Aqüicultura, Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Aptat. Correus 200, 43540 Sant Carles de la Ràpita, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
19
|
Hostetler HA, Petrescu AD, Kier AB, Schroeder F. Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands. J Biol Chem 2005; 280:18667-82. [PMID: 15774422 DOI: 10.1074/jbc.m412062200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the peroxisome proliferator-activated receptor (PPAR alpha) binds and is activated by a variety of synthetic xenobiotics, the identity of the high affinity endogenous ligand(s) is incompletely resolved. Likewise, it is not known how putative endogenous ligands alter PPAR alpha conformation in order to affect transcriptional regulation. Direct fluorescence binding and fluorescence displacement assays showed for the first time that PPAR alpha exhibits high affinity (1-14 nM K(d) values) for unsaturated long chain fatty acyl-CoAs as well as unsaturated long chain fatty acids commonly found in mammalian cells. Fluorescence resonance energy transfer between PPAR alpha aromatic amino acids and bound corresponding naturally occurring fluorescent ligands (i.e. cis-parinaroyl-CoA, trans-parinaric acid) yielded intermolecular distances of 25-29 angstroms, confirming close molecular interaction. Interestingly, although PPAR alpha also exhibited high affinity for saturated long chain fatty acyl-CoAs, regardless of chain length (1-13 nM K(d) values), saturated long chain fatty acids were not significantly bound. In contrast to the similar affinities of PPAR alpha for fatty acyl-CoAs and unsaturated fatty acids, CoA thioesters of peroxisome proliferator drugs were bound with 5-6-fold higher affinities than their free acid forms. Circular dichroism demonstrated that high affinity ligands (long chain fatty acyl-CoAs, unsaturated fatty acids), but not weak affinity ligands (saturated fatty acids), elicited conformational changes in PPAR alpha structure, a hallmark of ligand-activated nuclear receptors. Finally, these ligand specificities and induced conformational changes correlated functionally with co-activator binding. In summary, since nuclear concentrations of these ligands are in the nanomolar range, long chain fatty acyl-CoAs and unsaturated fatty acids may both represent endogenous PPAR alpha ligands. Furthermore, the finding that saturated fatty acyl-CoAs, rather than saturated fatty acids, are high affinity PPAR alpha ligands provides a mechanism accounting for saturated fatty acid transactivation in cell-based assays.
Collapse
Affiliation(s)
- Heather A Hostetler
- Department of Physiology and Pharmacology, Texas A & M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
20
|
Master SR, Hartman JL, D'Cruz CM, Moody SE, Keiper EA, Ha SI, Cox JD, Belka GK, Chodosh LA. Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol 2002; 16:1185-203. [PMID: 12040007 DOI: 10.1210/mend.16.6.0865] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The use of DNA microarrays to study vertebrate organogenesis presents unique analytical challenges compared with expression profiling of homogeneous cell populations. We have used a general approach that permits the automated, unbiased identification of biologically relevant patterns of gene expression to study murine mammary gland development. Our studies confirm the utility of this approach by demonstrating the ready identification of cellular processes and pathways of known functional importance in mammary development. Additionally, this approach permitted the identification of genetic pathways with unpredicted patterns of developmental regulation, including those involved in angiogenesis, extracellular matrix synthesis, and the beta-oxidation of fatty acids. Surprisingly, our findings demonstrate that the coordinate regulation of genes involved in the beta-oxidation of fatty acids reflects the presence of an abundant, yet previously unrecognized stromal compartment within the mammary gland that is composed of brown adipose tissue. Our data demonstrate that the amount of brown adipose tissue present in the mammary gland is developmentally regulated; that PPARalpha, Ucp1, and genes involved in fatty acid oxidation are spatially and temporally coregulated during development; that the mammary gland plays a functional role in adaptive thermogenesis; and that the transcriptional control of this adaptive response to cold is itself developmentally regulated.
Collapse
Affiliation(s)
- Stephen R Master
- Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rojas CV, Greiner RS, Fuenzalida LC, Martinez JI, Salem N, Uauy R. Long-term n-3 FA deficiency modifies peroxisome proliferator-activated receptor beta mRNA abundance in rat ocular tissues. Lipids 2002; 37:367-74. [PMID: 12030317 DOI: 10.1007/s1145-002-0904-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxisomal proliferator-activated receptors (PPAR) are a FA-response system involved in diverse cellular responses. FA regulate PPAR activity and modulate PPAR mRNA abundance. Increasing evidence indicates that PUFA are required for optimal neuronal development and function. To gain insight into the mechanism for nutrition-induced impairment of neuronal development and function we investigated the effect of chronic n-3 FA deficiency on PPAR mRNA levels in rat brain and ocular tissues. Rats were fed for three generations a diet designed to reduce DHA levels in tissues, and the abundance of PPARalpha and PPARbeta transcripts was measured by hybridization with specific probes. Chronic consumption of the a-linolenic acid (LNA)-insufficient diet caused a remarkable modification in DHA content in membrane phospholipids. The results reported here indicate that PPARa mRNA levels did not exhibit significant variation in ocular, hepatic, or nervous tissues from rats fed the experimental diet. In contrast, PPARalpha mRNA normalized to beta-actin mRNA was 21% higher in ocular tissue from F3 generation rats consuming the LNA-deficient diet but was independent of diet in hepatic and nervous tissues. The absolute abundance of PPARbeta transcripts showed a 17% increase in ocular tissue from rats consuming the LNA-deficient diet (F3 generation). The biological significance of the reported changes in PPARbeta mRNA in ocular tissue remains to be determined.
Collapse
|
22
|
Bonilla S, Redonnet A, Noël-Suberville C, Groubet R, Pallet V, Higueret P. Effect of a pharmacological activation of PPAR on the expression of RAR and TR in rat liver. J Physiol Biochem 2001. [DOI: 10.1007/bf03179807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|